初中数学

如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线l,过点B作一直线(在山的旁边经过),与相交于D点,经测量∠ABD=135°,BD=800米,求直线上距离D点多远的C处开挖?(≈1.414,精确到1米)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,点在同一直线上,.求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四边形ABCD中,点E、F是BC、CD的中点,且AE⊥BC,AF⊥CD.

(1)求证:AB=AD.
(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:

小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.
根据以上情境,解决下列问题:
①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.
②小聪的作法正确吗?请说明理由.
③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图.等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.


(1)试判定△ODE的形状.并说明你的理由;
(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

△ABC在平面直角坐标系xOy中的位置如图所示.

(1)作△ABC关于y轴成轴对称的△A1B1C1
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;则此三角形的面积为      
(3)在x轴上求作一点P,使PA1+PC2的值最小,点P的坐标为      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在ΔABC与ΔDCB 中,AC与BD 交于点E,且,∠A=∠D,AB=DC.

(1)求证:ΔABE≌ΔDCE
(2)当∠AEB=70°时,求∠EBC的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知D是BC的中点,过点D作BC的垂线交∠A的平分线于点E,EF⊥AB于点F,EG⊥AC于点G.求证:BF=CG.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知如图(1):△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC分别交AB、AC于E、F.

(1)写出线段EF与BE、CF间的数量关系?(不证明)
(2)若AB≠AC,其他条件不变,如图(2),图中线段EF与BE、CF间是否存在(1)中数量关系?请说明理由.
(3)若△ABC中,AB≠AC,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F,如图(3),这时图中线段EF与BE,CF间存在什么数量关系?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠A两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知OB、OC为△ABC的角平分线,EF∥BC交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.

(1)尺规作图(不写作法,保留作图痕迹):
作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接OE、CF、DF.
(2)在所画图中,线段OE与CD之间有怎样的数量关系,线段DF与CF之间有怎样的数量关系,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点D在BC上,DE垂直平分AC,垂足为E,F是BA的中点.

求证:DF是AB的垂直平分线.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求:

(1)到公园两个出入口A、C的距离相等;
(2)到公园两边围墙AB、AD的距离相等.
请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学三角形解答题