如图, 的直径 , , 是它的两条切线, 与 相切于点 ,并与 , 分别相交于 , 两点, , 相交于点 ,若 ,则 的长是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 的正方形网格中有两个格点 、 ,连接 ,在网格中再找一个格点 ,使得 是等腰直角三角形,满足条件的格点 的个数是
A. |
2 |
B. |
3 |
C. |
4 |
D. |
5 |
如图,在正方形 中, , 是 边上的一点, 。将 沿 对折至 ,连接 ,则 的长是
A. |
|
B. |
|
C. |
3 |
D. |
|
如图, 中, , , ,将 沿 翻折,使点 与点 重合,则 的长为
A. |
|
B. |
2 |
C. |
|
D. |
|
如图,已知点 是菱形 的对角线 延长线上一点,过点 分别作 、 延长线的垂线,垂足分别为点 、 .若 , ,则 的值为
A. |
|
B. |
|
C. |
2 |
D. |
|
如图,折叠矩形纸片 ,使点 落在点 处,折痕为 ,已知 , ,则 的长是
A. |
|
B. |
|
C. |
|
D. |
|
如图,四边形 是菱形,点 , 分别在 , 边上,添加以下条件不能判定 的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , , 于点 , .若 , 分别为 , 的中点,则 的长为
A. |
|
B. |
|
C. |
1 |
D. |
|
如图, 、 、 、 是四根长度均为 的火柴棒,点 、 、 共线.若 , ,则线段 的长度是
A. |
|
B. |
|
C. |
|
D. |
|
在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为"无字证明".实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是
A. |
统计思想 |
B. |
分类思想 |
C. |
数形结合思想 |
D. |
函数思想 |
两个直角三角板如图摆放,其中 , , , 与 交于点 .若 ,则 的大小为
A. |
|
B. |
|
C. |
|
D. |
|