如图,在平面直角坐标系中,点 的坐标为 , 轴于点 ,点 是线段 上的点,连结 .点 在线段 上,且 ,函数 的图象经过点 .当点 在线段 上运动时, 的取值范围是
A. |
|
B. |
|
C. |
|
D. |
|
九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数 的图象与性质共探究过程如下:
(1)绘制函数图象,如图1.
列表:下表是 与 的几组对应值,其中 ;
|
|
|
|
|
|
|
1 |
2 |
3 |
|
|
|
|
1 |
2 |
4 |
4 |
2 |
|
|
|
描点:根据表中各组对应值 ,在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;
(2)通过观察图1,写出该函数的两条性质;
① ;
② ;
(3)①观察发现:如图2.若直线 交函数 的图象于 , 两点,连接 ,过点 作 交 轴于 .则 ;
②探究思考:将①中"直线 "改为"直线 ",其他条件不变,则 ;
③类比猜想:若直线 交函数 的图象于 , 两点,连接 ,过点 作 交 轴于 ,则 .
已知正比例函数 和反比例函数 ,在同一直角坐标系下的图象如图所示,其中符合 的是
A. |
①② |
B. |
①④ |
C. |
②③ |
D. |
③④ |
若函数 的图象如图所示,则函数 和 在同一平面直角坐标系中的图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
已知反比例函数 的图象分别位于第二、第四象限, , 、 , 两点在该图象上,下列命题:①过点 作 轴, 为垂足,连接 .若 的面积为3,则 ;②若 ,则 ;③若 ,则 ,其中真命题个数是
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
反比例函数的图象上有一点,将点向右平移1个单位,再向下平移1个单位得到点,若点也在该函数的图象上,则 .
将 的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图,则所得图象的解析式为
A. |
|
B. |
|
C. |
|
D. |
|
若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:
0 |
1 |
2 |
3 |
||||||||||||
1 |
2 |
1 |
0 |
1 |
2 |
描点:在平面直角坐标系中,以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示.
(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;
(2)研究函数并结合图象与表格,回答下列问题:
①点,,,,,,在函数图象上,则 , ;(填“”,“ ”或“”
②当函数值时,求自变量的值;
③在直线的右侧的函数图象上有两个不同的点,,,,且,求的值;
④若直线与函数图象有三个不同的交点,求的取值范围.
(1)阅读理解
如图,点,在反比例函数的图象上,连接,取线段的中点.分别过点,,作轴的垂线,垂足为,,,交反比例函数的图象于点.点,,的横坐标分别为,,.
小红通过观察反比例函数的图象,并运用几何知识得出结论:
,
由此得出一个关于,,,之间数量关系的命题:
若,则 .
(2)证明命题
小东认为:可以通过“若,则”的思路证明上述命题.
小晴认为:可以通过“若,,且,则”的思路证明上述命题.
请你选择一种方法证明(1)中的命题.
已知反比例函数 的图象如图所示,则二次函数 和一次函数 在同一平面直角坐标系中的图象可能是
A. |
|
B. |
|
C. |
|
D. |
|