如图,直线 为 ,过点 作 轴,与直线 交于点 ,以原点 为圆心, 长为半径画圆弧交 轴于点 ;再作 轴,交直线 于点 ,以原点 为圆心, 长为半径画圆弧交 轴于点 ; ,按此作法进行下去,则点 的坐标为 .
如图,在平面直角坐标系中,点 是直线 上的动点,过点 作 轴,交直线 于点 ,当 时,设点 的横坐标为 ,则 的取值范围为 .
如图,在平面直角坐标系中,点 , , , 和 , , , 分别在直线 和 轴上.△ ,△ ,△ , 都是等腰直角三角形.如果点 ,那么点 的纵坐标是 .
如图,在平面直角坐标系中,直线 与 轴交于点 ,以 为边长作等边三角形 ,过点 作 平行于 轴,交直线 于点 ,以 为边长作等边三角形 ,过点 作 平行于 轴,交直线 于点 ,以 为边长作等边三角形 , ,则点 的横坐标是 .
如图,点 在直线 上,过点 作 轴交直线 于点 ,以点 为直角顶点, 为直角边在 的右侧作等腰直角△ ,再过点 作 轴,分别交直线 和 于 , 两点,以点 为直角顶点, 为直角边在 的右侧作等腰直角△ ,按此规律进行下去,则等腰直角△ 的面积为 .(用含正整数 的代数式表示)
如图,在平面直角坐标系中有直线 与双曲线 在直线上取点 ,过点 作 轴的垂线交双曲线于点 ,过 作 轴的垂线交直线于点 ,过点 作 轴的垂线交双曲线于点 ,过 作 轴的垂线交双曲线于点 过 作 轴的垂线交直线于点 , ,按此规律继续操作下去,依次得到直线上的点 , , , ,记点 的横坐标为 ,若 ,则 .
如图,点 在直线 上,过点 作 交直线 于点 ,以 为边在△ 外侧作等边三角形 ,再过点 作 ,分别交直线 和 于 , 两点,以 为边在△ 外侧作等边三角形 , 按此规律进行下去,则第 个等边三角形 的面积为 .(用含 的代数式表示)
如图,点 在直线 上,过点 分别作 轴、 轴的平行线交直线 于点 , ,过点 作 轴的平行线交直线 于点 ,过点 作 轴的平行线交直线 于点 , ,按照此规律进行下去,则点 的横坐标为 .
在平面直角坐标系中,直线 与 轴交于点 ,如图所示依次作正方形 、正方形 、 、正方形 ,使得点 、 、 、 在直线 上,点 、 、 、 在 轴正半轴上,则点 的坐标是 .
如图,直线 与 轴交于点 ,与 轴交于点 , 与△ 是以点 为位似中心的位似图形,且相似比为 ,则点 的对应点 的坐标为 .
如图,在平面直角坐标系中,直线 交 轴于点 ,交 轴于点 ,点 , , 在直线 上,点 , , , 在 轴的正半轴上,若△ ,△ ,△ , ,依次均为等腰直角三角形,直角顶点都在 轴上,则第 个等腰直角三角形 顶点 的横坐标为 .
如图,在平面直角坐标系中,函数 和 的图象分别为直线 , ,过点 作 轴的垂线交 于点 ,过点 作 轴的垂线交 于点 ,过点 作 轴的垂线交 于点 ,过点 作 轴的垂线交 于点 , 依次进行下去,则点 的坐标为 .
如图,直线 上有点 , , , ,且 , , , ,分别过点 , , , 作直线 的垂线,交 轴于点 , , , ,依次连接 , , , ,得到△ ,△ ,△ , ,△ ,则△ 的面积为 .(用含正整数 的式子表示)