已知点 P ( x 0 , y 0 ) 和直线 y = kx + b ,则点 P 到直线 y = kx + b 的距离证明可用公式 d = | k x 0 - y 0 + b | 1 + k 2 计算.
例如:求点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离.
解:因为直线 y = 3 x + 7 ,其中 k = 3 , b = 7 .
所以点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离为: d = | k x 0 - y 0 + b | 1 + k 2 = | 3 × ( - 1 ) - 2 + 7 | 1 + 3 2 = 2 10 = 10 5 .
根据以上材料,解答下列问题:
(1)求点 P ( 1 , - 1 ) 到直线 y = x - 1 的距离;
(2)已知 ⊙ Q 的圆心 Q 坐标为 ( 0 , 5 ) ,半径 r 为2,判断 ⊙ Q 与直线 y = 3 x + 9 的位置关系并说明理由;
(3)已知直线 y = - 2 x + 4 与 y = - 2 x - 6 平行,求这两条直线之间的距离.
平面直角坐标系 xOy 中,点 P 的坐标为 ( m + 1 , m - 1 ) .
(1)试判断点 P 是否在一次函数 y = x - 2 的图象上,并说明理由;
(2)如图,一次函数 y = - 1 2 x + 3 的图象与 x 轴、 y 轴分别相交于点 A 、 B ,若点 P 在 ΔAOB 的内部,求 m 的取值范围.