小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离 (单位: 与时间 (单位: 之间的对应关系.下列描述错误的是
A. |
小明家距图书馆 |
B. |
小明在图书馆阅读时间为 |
C. |
小明在图书馆阅读书报和往返总时间不足 |
D. |
小明去图书馆的速度比回家时的速度快 |
在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数 的性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
0 |
|
4 |
|
0 |
|
|
|
|
(2)请根据这个函数的图象,写出该函数的 条性质;
(3)已知函数 的图象如图所示.根据函数图象,直接写出不等式 的解集.(近似值保留一位小数,误差不超过
已知 , 两地相距 ,甲、乙两人沿同一条公路从 地出发到 地,甲骑自行车匀速行驶 到达,乙骑摩托车,比甲迟 出发,行至 处追上甲,停留半小时后继续以原速行驶.他们离开 地的路程 与甲行驶时间 的函数图象如图所示.当乙再次追上甲时距离 地
A. |
|
B. |
|
C. |
|
D. |
|
根据数学家凯勒的"百米赛跑数学模型",前30米称为"加速期",30米 米为"中途期",80米 米为"冲刺期".市田径队把运动员小斌某次百米跑训练时速度 与路程 之间的观测数据,绘制成曲线如图所示.
(1) 是关于 的函数吗?为什么?
(2)"加速期"结束时,小斌的速度为多少?
(3)根据如图提供的信息,给小斌提一条训练建议.
在"看图说故事"活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校 ,陈列馆离学校 .李华从学校出发,匀速骑行 到达书店;在书店停留 后,匀速骑行 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离 与离开学校的时间 之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表:
离开学校的时间 |
0.1 |
0.5 |
0.8 |
1 |
3 |
离学校的距离 |
2 |
10 |
|
12 |
|
(Ⅱ)填空:
①书店到陈列馆的距离为 ;
②李华在陈列馆参观学习的时间为 ;
③李华从陈列馆回学校途中,减速前的骑行速度为 ;
④当李华离学校的距离为 时,他离开学校的时间为 .
(Ⅲ)当 时,请直接写出 关于 的函数解析式.
函数图象是研究函数的重要工具。探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程。请结合已有的学习经验,画出函数 的图象,并探究其性质.
列表如下:
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
0 |
|
|
|
|
|
(1)写出表中 、 的值,并在平面直角坐标系中画出该函数的图象;
(2)观察函数 的图象,判断下列关于该函数性质的命题:
①当 时,函数图象关于直线 对称;
② 时,函数有最小值,最小值为 ;
③ 时,函数 的值随 的增大而减小.
其中正确的是 .(请写出所有正确命题的番号)
(3)结合图象,请写出不等式 的解集 .
一对变量满足如图的函数关系.设计以下问题情境:
①小明从家骑车以600米 分的速度匀速骑了2.5分钟,在原地停留了2分钟,然后以1000米 分的速度匀速骑回家.设所用时间为 分钟,离家的距离为 千米;
②有一个容积为1.5升的开口空瓶,小张以0.6升 秒的速度匀速向这个空瓶注水,注满后停止,等2秒后,再以1升 秒的速度匀速倒空瓶中的水.设所用时间为 秒,瓶内水的体积为 升;
③在矩形 中, , ,点 从点 出发.沿 路线运动至点 停止.设点 的运动路程为 , 的面积为 .
其中,符合图中函数关系的情境个数为
A. |
3 |
B. |
2 |
C. |
1 |
D. |
0 |
已知函数
(1)画出函数图象;
列表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
描点,连线得到函数图象:
(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;
(3)设 , , , 是函数图象上的点,若 ,证明: .
新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用 、 分别表示乌龟和兔子赛跑的路程, 为赛跑时间,则下列图象中与故事情节相吻合的是
A. |
|
B. |
|
C. |
|
D. |
|
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离 与慢车行驶的时间 之间的关系如图:
(1)快车的速度为 , 点的坐标为 .
(2)慢车出发多少小时后,两车相距 .
如图,线段 ,点 、 在 上, .已知点 从点 出发,以每秒1个单位长度的速度沿着 向点 移动,到达点 后停止移动.在点 移动过程中作如下操作:先以点 为圆心, 、 的长为半径分别作两个圆心角均为 的扇形,再把两个扇形分别围成两个圆锥的侧面,设点 的移动时间为 (秒 ,两个圆锥的底面面积之和为 ,则 关于 的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的 继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚 分钟到达B地.
如图,是 市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是
A. B. C. D.
将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯内水面的高度 与注水时间 的函数图象大致为图中的
A.B.
C.D.