根据数学家凯勒的"百米赛跑数学模型",前30米称为"加速期",30米 ~ 80 米为"中途期",80米 ~ 100 米为"冲刺期".市田径队把运动员小斌某次百米跑训练时速度 y ( m / s ) 与路程 x ( m ) 之间的观测数据,绘制成曲线如图所示.
(1) y 是关于 x 的函数吗?为什么?
(2)"加速期"结束时,小斌的速度为多少?
(3)根据如图提供的信息,给小斌提一条训练建议.
某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用 A , B , C , D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是 (填“普查”或“抽样调查” ) ;
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
如图,海中有一小岛 A ,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在 B 点测得小岛 A 在北偏东 60 ° 方向上,航行12海里到达 D 点,这时测得小岛 A 在北偏东 30 ° 方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?
如图,抛物线 y = a x 2 + bx + c 经过 A ( - 1 , 0 ) 、 B ( 4 , 0 ) 、 C ( 0 , 2 ) 三点,点 D ( x , y ) 为抛物线上第一象限内的一个动点.
(1)求抛物线所对应的函数表达式;
(2)当 ΔBCD 的面积为3时,求点 D 的坐标;
(3)过点 D 作 DE ⊥ BC ,垂足为点 E ,是否存在点 D ,使得 ΔCDE 中的某个角等于 ∠ ABC 的2倍?若存在,求点 D 的横坐标;若不存在,请说明理由.
出关于 x 的一元二次方程,解之取其非零值可得出点 D 的横坐标.依此即可得解.
如图,正方形 ABCD 中, P 是对角线 AC 上的一个动点(不与 A 、 C 重合),连结 BP ,将 BP 绕点 B 顺时针旋转 90 ° 到 BQ ,连结 QP 交 BC 于点 E , QP 延长线与边 AD 交于点 F .
(1)连结 CQ ,求证: AP = CQ ;
(2)若 AP = 1 4 AC ,求 CE : BC 的值;
(3)求证: PF = EQ .
我们知道,任意一个正整数 x 都可以进行这样的分解: x = m × n ( m , n 是正整数,且 m ⩽ n ) ,在 x 的所有这种分解中,如果 m , n 两因数之差的绝对值最小,我们就称 m × n 是 x 的最佳分解.并规定: f ( x ) = m n .
例如:18可以分解成 1 × 18 , 2 × 9 或 3 × 6 ,因为 18 - 1 > 9 - 2 > 6 - 3 ,所以 3 × 6 是18的最佳分解,所以 f ( 18 ) = 3 6 = 1 2 .
(1)填空: f (6) = ; f (9) = ;
(2)一个两位正整数 t ( t = 10 a + b , 1 ⩽ a ⩽ b ⩽ 9 , a , b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求 f ( t ) 的最大值;
(3)填空:
① f ( 2 2 × 3 × 5 × 7 ) = ;② f ( 2 3 × 3 × 5 × 7 ) = ;③ f ( 2 4 × 3 × 5 × 7 ) = ;④ f ( 2 5 × 3 × 5 × 7 ) = .