根据数学家凯勒的"百米赛跑数学模型",前30米称为"加速期",30米 ~ 80 米为"中途期",80米 ~ 100 米为"冲刺期".市田径队把运动员小斌某次百米跑训练时速度 y ( m / s ) 与路程 x ( m ) 之间的观测数据,绘制成曲线如图所示.
(1) y 是关于 x 的函数吗?为什么?
(2)"加速期"结束时,小斌的速度为多少?
(3)根据如图提供的信息,给小斌提一条训练建议.
如图所示,在直角三角形ABC中,∠C=90°,四边形ECFD为正方形,若AD=3,DB=4,求阴影部分的面积.(提示:将△AED绕D点按逆时针方向旋转90°,得到△A1FD,把阴影部分构造成规则的图形)
直线l与直线y=2x+1的交点的横坐标为2,与直线y=﹣x+2的交点的纵坐标为1,求直线l对应的函数解析式.
如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE.
如图,在四边形ABCD中,AD∥BC,AE=2EB,AD=2,BC=5,EF∥DC,交BC于点F,连接AF. (1)求CF的长; (2)若∠BFE=∠FAB,求AB的长.
如图,在四边形ABCD中,AB=AD,AC与BD相交于点E,∠ADB=∠ACB. (1)求证:AD2=AE•AC; (2)若AB⊥AC,CE=2AE,F是BC的中点,连接AF,判断△ABF的形状,并说明理由.