已知函数 y = 3 x , x ⩽ − 1 , 3 x , − 1 < x ⩽ 1 , 3 x , x ⩾ 1 ⋅
(1)画出函数图象;
列表:
x
…
− 3
y
. …
描点,连线得到函数图象:
(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;
(3)设 ( x 1 , y 1 ) , ( x 2 , y 2 ) 是函数图象上的点,若 x 1 + x 2 = 0 ,证明: y 1 + y 2 = 0 .
问题情境 如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF. 特例探究 填空: 当m=1,n=2时,yE= ,yF= ; 当m=3,n=5时,yE= ,yF= . 归纳证明 对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想. 拓展应用 (1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系; (2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.
进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务. (1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式; (2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围; (3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上. (1)求n的值; (2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
某居民小区为缓解居民停车难问题为缓解“停车难”问题,拟造地下停车库,如图是地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5.根据规定,地下停车库破道口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.请根据以上数据,求出该地下停车库限高CE的长.(结果精确到0.1米) (sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
已知矩形长和宽分别为4和2,是否存在另一个矩形,它的周长和面积分别是已知矩形的?若存在请计算这个矩形的两边长,若不存在请说明理由.