如图,在平面直角坐标系中, 的顶点坐标分别为 , , ,点 绕点 旋转 得到点 ,点 绕点 旋转 得到点 ,点 绕点 旋转 得到点 ,点 绕点 旋转 得到点 , ,按此作法进行下去,则点 的坐标为 .
如图,在平面直角坐标系中,直线 交 轴于点 ,交 轴于点 ,点 , , 在直线 上,点 , , , 在 轴的正半轴上,若△ ,△ ,△ , ,依次均为等腰直角三角形,直角顶点都在 轴上,则第 个等腰直角三角形 顶点 的横坐标为 .
如图,在平面直角坐标系中有直线 与双曲线 在直线上取点 ,过点 作 轴的垂线交双曲线于点 ,过 作 轴的垂线交直线于点 ,过点 作 轴的垂线交双曲线于点 ,过 作 轴的垂线交双曲线于点 过 作 轴的垂线交直线于点 , ,按此规律继续操作下去,依次得到直线上的点 , , , ,记点 的横坐标为 ,若 ,则 .
如图,在矩形 中, , ,一发光电子开始置于 边的点 处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着 方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于 ,若发光电子与矩形的边碰撞次数经过2019次后,则它与 边的碰撞次数是 .
如图,直线 与两坐标轴分别交于 , 两点,将线段 分成 等份,分点分别为 , , , , ,过每个分点作 轴的垂线分别交直线 于点 , , , , ,用 , , , , 分别表示 △ , △ , , △ 的面积,则 .
一组正方形按如图所示的方式放置,其中顶点 在 轴上,顶点 、 、 、 、 、 、 在 轴上,已知正方形 的边长为1, , 则正方形 的边长是
A. B. C. D.
在平面直角坐标系中,直线 与 轴交于点 ,如图所示依次作正方形 、正方形 、 、正方形 ,使得点 、 、 、 在直线 上,点 、 、 、 在 轴正半轴上,则点 的坐标是 .
如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为 .
如图,在平面直角坐标系中,点 ,直线 与 轴交于点 ,以 为边作等边 ,过点 作 轴,交直线 于点 ,以 为边作等边△ ,过点 作 轴,交直线 于点 ,以 为边作等边△ ,以此类推 ,则点 的纵坐标是 .
如图,在平面直角坐标系中,直线 交 轴于点 ,交 轴于点 ,点 , , 在直线 上,点 , , , 在 轴的正半轴上,若△ ,△ ,△ , ,依次均为等腰直角三角形,直角顶点都在 轴上,则第 个等腰直角三角形 顶点 的横坐标为 .
如图,在平面直角坐标系中,已知直线 和双曲线 ,在直线上取一点,记为 ,过 作 轴的垂线交双曲线于点 ,过 作 轴的垂线交直线于点 ,过 作 轴的垂线交双曲线于点 ,过 作 轴的垂线交直线于点 , ,依次进行下去,记点 的横坐标为 ,若 ,则 .
我们把1,1,2,3,5,8,13,21, 这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作 圆弧 , , , 得到斐波那契螺旋线,然后顺次连接 , , , 得到螺旋折线(如图),已知点 , , ,则该折线上的点 的坐标为
A. B. C. D.
如图,过点作直线的垂线,垂足为点,过点作轴,垂足为点,过点作,垂足为点,,这样依次下去,得到一组线段:,,,,则线段的长为
A.B.C.D.
如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点 的坐标可表示为 ,2, ,点 的坐标可表示为 ,1, ,按此方法,则点 的坐标可表示为 .