如图所示,在平面直角坐标系中,一组同心圆的圆心为坐标原点,它们的半径分别为1,2,3,,按照“加1”依次递增;一组平行线,,,,,都与轴垂直,相邻两直线的间距为1,其中与轴重合.若半径为2的圆与在第一象限内交于点,半径为3的圆与在第一象限内交于点,,半径为的圆与在第一象限内交于点,则点的坐标为 为正整数)
规定:在平面直角坐标系中,如果点的坐标为,那么向量可以表示为:,如果与互相垂直,,,,,那么.若与互相垂直,,,则锐角 .
如图,在平面直角坐标系中,函数和的图象分别为直线,,过上的点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,依次进行下去,则点的横坐标为 .
如图,点、、在反比例函数的图象上,点、、在反比例函数的图象上,,且,则为正整数)的纵坐标为 .(用含的式子表示)
在平面直角坐标系中,三个顶点的坐标分别为,,.以原点为位似中心,把这个三角形缩小为原来的,得到,则点的对应点的坐标是 .
正方形,,,按如图所示的方式放置,点,,,和点,,,分别在直线和轴上.已知点,点,则的坐标是 .
如图,矩形硬纸片的顶点在轴的正半轴及原点上滑动,顶点在轴的正半轴及原点上滑动,点为的中点,,.给出下列结论:①点从点出发,到点运动至点为止,点经过的路径长为;②的面积最大值为144;③当最大时,点的坐标为,.其中正确的结论是 .(填写序号)
如图,在平面直角坐标系中,点的坐标为,以为直角边作△,并使,再以为直角边作△,并使,再以为直角边作△,并使按此规律进行下去,则点的坐标为 .
如图,在平面直角坐标系中,我们把横、纵坐标都是整数的点为“整点”,已知点的坐标为,点在轴的上方,的面积为,则内部(不含边界)的整点的个数为 .
如图,由两个长为2,宽为1的长方形组成“7”字图形
(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形,其中顶点位于轴上,顶点,位于轴上,为坐标原点,则的值为 .
(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点,摆放第三个“7”字图形得顶点,依此类推,,摆放第个“7”字图形得顶点,,则顶点的坐标为 .
点的坐标是,从,,0,1,2这五个数中任取一个数作为的值,再从余下的四个数中任取一个数作为的值,则点在平面直角坐标系中第二象限内的概率是 .