初中数学

已知关于的一元二次方程有两个实数根.
(1)求的取值范围;
(2)设是方程的一个实数根,且满足,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于x的方程x2-6x+m2-3m=0的一根为2.
(1)求5m2-15m-100的值; 
(2)求方程的另一根.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

解方程:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数为常数).
(1)证明:无论m取何值,该函数与轴总有两个交点;
(2)设函数的两交点的横坐标分别为,且,求此函数的解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于的一元二次方程 的两个实数根的值分别是ABCD的两边AB、AD的长.
(1)如果,试求ABCD的周长;
(2)当为何值时,ABCD是菱形?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知A=a+2,B=2a2-3a+10,C=a2+5a-3,
(1)求证:无论a为何值,A-B<0成立,并指出A,B的大小关系;
(2)请分析A与C的大小关系.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

先阅读理解下面的例题,再按要求解答下列问题:
例题 :求代数式的最小值.
解:
  
的最小值是
(1)代数式的最小值         ;
(2)求代数式的最小值;
(3)某居民小区要在一块一边靠墙(墙长)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为的栅栏围成.如图,设),请问:当取何值时,花园的面积最大?最大面积是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,利用一面墙(墙的长度为20米),用36米长的篱笆围成两个长方形鸡场,鸡场与鸡场,中间用一道篱笆隔开,每个鸡场均留一道1米宽的门,设的长为米.

(1)当时,求点到点的距离;
(2)用含的代数式表示两个鸡场的面积和,并将所得式子化简;
(3)两个鸡场的面积和有最大值吗?若有,请求出最大值;若没有,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年新疆乌鲁木齐市)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?

来源:2015中考真题分项汇编 第2期 专题15 应用题问题
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年贵州省黔东南州)先化简,后求值:,其中是方程的根.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年贵州省黔南州)(1)已知:,先化简,再求它的值;
(2)已知m和n是方程的两根,求

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于x的方程x2-(m+2)x+(2m-1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知 x1、x2是一元二次方程的两个实数根。
(1)求的取值范围;
(2)是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年湖南怀化10分)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x 1,x2
(1)若,求的值;
(2)求的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一元二次方程解答题