初中数学

已知关于 x 的方程 x 2 - ( 3 k + 3 ) x + 2 k 2 + 4 k + 2 = 0

(1)求证:无论 k 为何值,原方程都有实数根;

(2)若该方程的两实数根 x 1 x 2 为一菱形的两条对角线之长,且 x 1 x 2 + 2 x 1 + 2 x 2 = 36 ,求 k 值及该菱形的面积.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

某市总预算 a 亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.

2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加 b 亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年年初开始逐年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到 3 : 2

(1)这三年用于辅助配套的投资将达到多少亿元?

(2)市政府2015年年初对三项工程的总投资是多少亿元?

(3)求搬迁安置投资逐年递减的百分数.

来源:2017年湖北省宜昌市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有 A B 两种型号的健身器材可供选择.

(1)劲松公司2015年每套 A 型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套 A 型健身器材年平均下降率 n

(2)2017年市政府经过招标,决定年内采购并安装劲松公司 A B 两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套 A 型健身器材售价为1.6万元,每套 B 型健身器材售价为 1 . 5 ( 1 - n ) 万元.

A 型健身器材最多可购买多少套?

②安装完成后,若每套 A 型和 B 型健身器材一年的养护费分别是购买价的 5 % 15 % ,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?

来源:2017年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - 6 x + m + 4 = 0 有两个实数根 x 1 x 2

(1)求 m 的取值范围;

(2)若 x 1 x 2 满足 3 x 1 = | x 2 | + 2 ,求 m 的值.

来源:2017年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.

(1)求该企业从2014年到2016年利润的年平均增长率;

(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?

来源:2017年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - ( m + 1 ) x + 1 2 ( m 2 + 1 ) = 0 有实数根.

(1)求 m 的值;

(2)先作 y = x 2 - ( m + 1 ) x + 1 2 ( m 2 + 1 ) 的图象关于 x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;

(3)在(2)的条件下,当直线 y = 2 x + n ( n m ) 与变化后的图象有公共点时,求 n 2 - 4 n 的最大值和最小值.

来源:2017年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - ( m + 1 ) x + 1 2 ( m 2 + 1 ) = 0 有实数根.

(1)求 m 的值;

(2)先作 y = x 2 - ( m + 1 ) x + 1 2 ( m 2 + 1 ) 的图象关于 x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;

(3)在(2)的条件下,当直线 y = 2 x + n ( n m ) 与变化后的图象有公共点时,求 n 2 - 4 n 的最大值和最小值.

来源:2017年湖北省武汉市江汉油田中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

某水果店在两周内,将标价为10元 / 斤的某种水果,经过两次降价后的价格为8.1元 / 斤,并且两次降价的百分率相同.

(1)求该种水果每次降价的百分率;

(2)从第一次降价的第1天算起,第 x 天( x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元 / 斤,设销售该水果第 x (天)的利润为 y (元),求 y x ( 1 x < 15 ) 之间的函数关系式,并求出第几天时销售利润最大?

时间 x (天)

1 x < 9

9 x < 15

x 15

售价(元 / 斤)

第1次降价后的价格

第2次降价后的价格

销量(斤)

80 - 3 x

120 - x

储存和损耗费用(元)

40 + 3 x

3 x 2 - 64 x + 400

(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?

来源:2017年湖北省随州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的方程 x 2 + ( 2 k - 1 ) x + k 2 - 1 = 0 有两个实数根 x 1 x 2

(1)求实数 k 的取值范围;

(2)若 x 1 x 2 满足 x 1 2 + x 2 2 = 16 + x 1 x 2 ,求实数 k 的值.

来源:2017年湖北省十堰市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( k - 5 ) x + 1 - k = 0 ,其中 k 为常数.

(1)求证:无论 k 为何值,方程总有两个不相等实数根;

(2)已知函数 y = x 2 + ( k - 5 ) x + 1 - k 的图象不经过第三象限,求 k 的取值范围;

(3)若原方程的一个根大于3,另一个根小于3,求 k 的最大整数值.

来源:2017年湖北省荆州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - 4 x - m 2 = 0

(1)求证:该方程有两个不等的实根;

(2)若该方程的两实根 x 1 x 2 满足 x 1 + 2 x 2 = 9 ,求 m 的值.

来源:2017年湖北省黄石市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( 2 k + 1 ) x + k 2 = 0 ①有两个不相等的实数根.

(1)求 k 的取值范围;

(2)设方程①的两个实数根分别为 x 1 x 2 ,当 k = 1 时,求 x 1 2 + x 2 2 的值.

来源:2017年湖北省黄冈市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

关于 x 的方程 x 2 - ( 2 k - 1 ) x + k 2 - 2 k + 3 = 0 有两个不相等的实数根.

(1)求实数 k 的取值范围;

(2)设方程的两个实数根分别为 x 1 x 2 ,存不存在这样的实数 k ,使得 | x 1 | - | x 2 | = 5 ?若存在,求出这样的 k 值;若不存在,说明理由.

来源:2017年湖北省鄂州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,有一块矩形硬纸板,长 30 cm ,宽 20 cm .在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为 200 c m 2

来源:2019年江苏省徐州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

解方程:

(1) x 2 - 2 x - 5 = 0

(2) 1 x - 2 = 4 x + 1

来源:2019年江苏省无锡市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学一元二次方程计算题