初中数学

(1)解方程: ( x + 1 ) 2 - 4 = 0

(2)解不等式组: - 2 x + 3 1 x - 1 < x 3 + 1

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2022-04-27
  • 题型:未知
  • 难度:未知

(1)解方程: 2 x 2 x 1 = 0

(2)解不等式组: 4 x > 2 x 8 x 1 3 x + 1 6

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

(1)计算: 2 tan 60 ° 12 ( 3 2 ) 0 + ( 1 3 ) 1

(2)解方程: x 2 2 x 1 = 0

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

解方程: ( x 3 ) ( x 1 ) = 3

来源:2017年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知关于 x 的方程 x 2 2 x + m = 0 有两个不相等的实数根,求实数 m 的取值范围.

来源:2018年四川省甘孜州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

若关于 x 的一元二次方程 x 2 ( 2 a + 1 ) x + a 2 = 0 有两个不相等的实数根,求 a 的取值范围.

来源:2018年四川省成都市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

解方程: 3 x ( x 2 ) = x 2

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为 Q ,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的 Q 值都以平均值 n 计算.第一年有40家工厂用乙方案治理,共使 Q 值降低了12.经过三年治理,境内长江水质明显改善.

(1)求 n 的值;

(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数 m ,三年来用乙方案治理的工厂数量共190家,求 m 的值,并计算第二年用乙方案新治理的工厂数量;

(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的 Q 值比上一年都增加一个相同的数值 a .在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的 Q 值与当年用甲方案治理降低的 Q 值相等,第三年,用甲方案使 Q 值降低了39.5.求第一年用甲方案治理降低的 Q 值及 a 的值.

来源:2018年湖北省宜昌市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 ( x - 3 ) ( x - 2 ) = p ( p + 1 )

(1)试证明:无论 p 取何值此方程总有两个实数根;

(2)若原方程的两根 x 1 x 2 ,满足 x 1 2 + x 2 2 - x 1 x 2 = 3 p 2 + 1 ,求 p 的值.

来源:2018年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( 2 m + 1 ) x + m 2 - 2 = 0

(1)若该方程有两个实数根,求 m 的最小整数值;

(2)若方程的两个实数根为 x 1 x 2 ,且 ( x 1 - x 2 ) 2 + m 2 = 21 ,求 m 的值.

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( 2 k + 3 ) x + k 2 = 0 有两个不相等的实数根 x 1 x 2

(1)求 k 的取值范围;

(2)若 1 x 1 + 1 x 2 = - 1 ,求 k 的值.

来源:2018年湖北省随州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - ( 2 k - 1 ) x + k 2 + k - 1 = 0 有实数根.

(1)求 k 的取值范围;

(2)若此方程的两实数根 x 1 x 2 满足 x 1 2 + x 2 2 = 11 ,求 k 的值.

来源:2018年湖北省十堰市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的方程 x 2 - 2 x + m = 0 有两个不相等的实数根 x 1 x 2

(1)求实数 m 的取值范围;

(2)若 x 1 - x 2 = 2 ,求实数 m 的值.

来源:2018年湖北省黄石市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知直线 l : y = kx + 1 与抛物线 y = x 2 - 4 x

(1)求证:直线 l 与该抛物线总有两个交点;

(2)设直线 l 与该抛物线两交点为 A B O 为原点,当 k = - 2 时,求 ΔOAB 的面积.

来源:2018年湖北省黄冈市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的方程 x 2 - ( 3 k + 3 ) x + 2 k 2 + 4 k + 2 = 0

(1)求证:无论 k 为何值,原方程都有实数根;

(2)若该方程的两实数根 x 1 x 2 为一菱形的两条对角线之长,且 x 1 x 2 + 2 x 1 + 2 x 2 = 36 ,求 k 值及该菱形的面积.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学一元二次方程计算题