某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装载1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.
(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?
(2)经初步估算,公司要运往工厂的这批材料不超过1245箱.计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?
为了庆祝中国共产党成立100周年,某校组织了党史知识竞赛,学校购买了若干副乒乓球拍和羽毛球拍对表现优异的班级进行奖励.若购买2副乒乓球拍和1副羽毛球拍共需280元;若购买3副乒乓球拍和2副羽毛球拍共需480元.求1副乒乓球拍和1副羽毛球拍各是多少元?
我国传统数学名著《九章算术》记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”译文:有若干只鸡与兔在同一个笼子里,从上面数有35个头,从下面数有94只脚,问笼中各有几只鸡和兔?根据以上译文,回答以下问题:
(1)笼中鸡、兔各有多少只?
(2)若还是94只脚,但不知道头多少个,笼中鸡兔至少30只且不超过40只.鸡每只值80元,兔每只值60元,问这笼鸡兔最多值多少元?最少值多少元?
某市垃圾处理厂利用焚烧垃圾产生的热能发电.有 , 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100吨,每焚烧一吨垃圾, 焚烧炉比 焚烧炉多发电50度, , 焚烧炉每天共发电55000度.
(1)求焚烧一吨垃圾, 焚烧炉和 焚烧炉各发电多少度?
(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾, 焚烧炉和 焚烧炉的发电量分别增加 和 ,则 , 焚烧炉每天共发电至少增加 ,求 的最小值.
某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个 种奖品和4个 种奖品共需100元;购买5个 种奖品和2个 种奖品共需130元.学校准备购买 , 两种奖品共20个,且 种奖品的数量不小于 种奖品数量的 ,则在购买方案中最少费用是 元.
我国古代数学名著《九章算术》中记载"今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?"意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有 人,物价是 钱,则下列方程正确的是
A. |
|
B. |
|
C. |
|
D. |
|
我国古代数学经典著作《九章算术》中有这样一题,原文是:"今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?"意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为 人,物价为 钱,下列方程组正确的是
A. |
|
B. |
|
C. |
|
D. |
|
我国古代数学古典名著《孙子算经》中记载:"今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?"其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量,木条还剩余1尺;问长木多少尺?如果设木条长为 尺,绳子长为 尺,则下面所列方程组正确的是
A. |
|
B. |
|
C. |
|
D. |
|
《九章算术》卷八方程第十题原文为:"今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?"题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的 ,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为 , ,则可列方程组为
A. |
|
B. |
|
C. |
|
D. |
|