我国传统数学名著《九章算术》记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”译文:有若干只鸡与兔在同一个笼子里,从上面数有35个头,从下面数有94只脚,问笼中各有几只鸡和兔?根据以上译文,回答以下问题:
(1)笼中鸡、兔各有多少只?
(2)若还是94只脚,但不知道头多少个,笼中鸡兔至少30只且不超过40只.鸡每只值80元,兔每只值60元,问这笼鸡兔最多值多少元?最少值多少元?
在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏. 小明画出树状图如图所示: 小华列出表格如下: 回答下列问题: (1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片; (2)根据小华的游戏规则,表格中①表示的有序数对为; (3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=,∠DPA=45°. (1)求⊙O的半径; (2)求图中阴影部分的面积.
如图,抛物线与x轴相交于B,C两点,与y轴相交于点A,点P(,)(a是任意实数)在抛物线上,直线经过A,B两点. (1)求直线AB的解析式; (2)平行于y轴的直线交直线AB于点D,交抛物线于点E. ①直线(0≤t≤4)与直线AB相交F,与抛物线相交于点G.若FG∶DE=3∶4,求t的值; ②将抛物线向上平移m(m>0)个单位,当EO平分∠AED时,求m的值.
九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表: 已知该商品的进价为每件30元,设销售该商品的每天利润为y元. (1)求出y与x的函数关系式. (2)问销售该商品第几天时,当天销售利润最大,最大利润是多少? (3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
如图,已知抛物线()的顶点坐标为(4,),且与y轴交于点C(0,2),与x轴交于A、B两点(点A在点B的左边). (1)求抛物线的解析式及A、B两点的坐标; (2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小,若存在,求AP+CP的最小值;若不存在,请说明理由; (3)在以AB为直径的⊙M中,CE与⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.