某运输公司有 、 两种货车,3辆 货车与2辆 货车一次可以运货90吨,5辆 货车与4辆 货车一次可以运货160吨.
(1)请问1辆 货车和1辆 货车一次可以分别运货多少吨?
(2)目前有190吨货物需要运输,该运输公司计划安排 、 两种货车将全部货物一次运完 、 两种货车均满载),其中每辆 货车一次运货花费500元,每辆 货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到 地和 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
目的地 车型 |
地(元 辆) |
地(元 辆) |
大货车 |
900 |
1000 |
小货车 |
500 |
700 |
现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往 地,其余前往 地,设前往 地的大货车有 辆,这20辆货车的总运费为 元.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)求 与 的函数解析式,并直接写出 的取值范围;
(3)若运往 地的物资不少于140吨,求总运费 的最小值.
某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.
(1)求甲、乙两个车间各有多少名工人参与生产?
(2)为了提前完成生产任务,该企业设计了两种方案:
方案一 甲车间租用先进生产设备,工人的工作效率可提高 ,乙车间维持不变.
方案二 乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.
设计的这两种方案,企业完成生产任务的时间相同.
①求乙车间需临时招聘的工人数;
②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.
众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到 地和 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
目的地 车型 |
地(元 辆) |
地(元 辆) |
大货车 |
900 |
1000 |
小货车 |
500 |
700 |
现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往 地,其余前往 地,设前往 地的大货车有 辆,这20辆货车的总运费为 元.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)求 与 的函数解析式,并直接写出 的取值范围;
(3)若运往 地的物资不少于140吨,求总运费 的最小值.
《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”
译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”
设每头牛值金x两,每只羊值金y两,可列方程组为 .
对于任意一个四位数 ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数 为"共生数".例如: ,因为 ,所以3507是"共生数"; ,因为 ,所以4135不是"共生数".
(1)判断5313,6437是否为"共生数"?并说明理由;
(2)对于"共生数" ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记 .求满足 各数位上的数字之和是偶数的所有 .
同型号的甲、乙两辆车加满气体燃料后均可行驶 ,它们各自单独行驶并返回的最远距离是 .现在它们都从 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回 地,而乙车继续行驶,到 地后再行驶返回 地.则 地最远可距离 地
A. B. C. D.
2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:
型号 价格(元 只) 项目 |
甲 |
乙 |
成本 |
12 |
4 |
售价 |
18 |
6 |
(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?
(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.
放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.
(1)求笔记本的单价和单独购买一支笔芯的价格;
(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.
在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买 、 两种防疫物品.如果购买 种物品60件, 种物品45件,共需1140元;如果购买 种物品45件, 种物品30件,共需840元.
(1)求 、 两种防疫物品每件各多少元;
(2)现要购买 、 两种防疫物品共600件,总费用不超过7000元,那么 种防疫物品最多购买多少件?
为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.
(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;
(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?
中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为( )
A. B.
C. D.
为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为 元.