初中数学

解方程组: x + y = 3 x 2 4 y 2 = 0

来源:2021年上海市中考数学试卷
  • 更新:2022-04-27
  • 题型:未知
  • 难度:未知

某次知识竞赛共有20道题,规定:每答对一道题得 + 5 分,每答错一道题得 2 分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了 x 道题,答错了 y 道题,则 (    )

A. x y = 20 B. x + y = 20 C. 5 x 2 y = 60 D. 5 x + 2 y = 60

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离 y ( m ) 与步行时间 x ( min ) 之间的函数关系式如图中折线段 AB - BC - CD 所示.

(1)小丽与小明出发   min 相遇;

(2)在步行过程中,若小明先到达甲地.

①求小丽和小明步行的速度各是多少?

②计算出点 C 的坐标,并解释点 C 的实际意义.

来源:2020年宁夏中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

已知 x y 满足方程组 4 x + 3 y = 1 2 x + y = 3 ,则 x + y 的值为   

来源:2021年山东省枣庄市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.

(1)求笔记本的单价和单独购买一支笔芯的价格;

(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:

“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有 x y 人,则可以列方程组  

来源:2017年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

方程组 x y = 2 x + 2 y = 5 的解是  x = 3 y = 1  

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

方程组 x 3 = y 2 = x + y 4 的解是 (    )

A. x = 3 y = 2 B. x = 6 y = 4 C. x = 2 y = 3 D. x = 3 y = 2

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

若二元一次方程组 x + y = 3 3 x 5 y = 4 的解为 x = a y = b ,则 a b =   

来源:2018年山东省枣庄市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.

(1)甲、乙两种书柜每个的价格分别是多少元?

(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.

来源:2017年四川省泸州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知两个角的和是 67 ° 56 ' ,差是 12 ° 40 ' ,则这两个角的度数分别是  

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知关于 x 的方程 2 x = m 的解满足 x y = 3 n x + 2 y = 5 n ( 0 < n < 3 ) ,若 y > 1 ,则 m 的取值范围是  

来源:2016年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为 x ,乙数为 y ,根据题意,列方程组正确的是 (    )

A. x + y = 7 x = 2 y B. x + y = 7 y = 2 x C. x + 2 y = 7 x = 2 y D. 2 x + y = 7 y = 2 x

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对 A B 两个玉米品种进行实验种植对比研究.去年 A B 两个品种各种植了10亩.收获后 A B 两个品种的售价均为 2 . 4 元/kg,且 B 品种的平均亩产量比A品种高100千克, A B 两个品种全部售出后总收入为 21600 元.

(1)求 A B 两个品种去年平均亩产量分别是多少千克?

(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计AB两个品种平均亩产量将在去年的基础上分别增加 a % 2 a % .由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨 a % ,而A品种的售价保持不变, A B 两个品种全部售出后总收入将增加 20 9 a % .求a的值.

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为  元.

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学二元一次方程组试题