为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为 元.
有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.
(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?
火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为 .随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的 ,则摆摊的营业额将达到7月份总营业额的 ,为使堂食、外卖7月份的营业额之比为 ,则7月份外卖还需增加的营业额与7月份总营业额之比是 .
某运输公司有 、 两种货车,3辆 货车与2辆 货车一次可以运货90吨,5辆 货车与4辆 货车一次可以运货160吨.
(1)请问1辆 货车和1辆 货车一次可以分别运货多少吨?
(2)目前有190吨货物需要运输,该运输公司计划安排 、 两种货车将全部货物一次运完 、 两种货车均满载),其中每辆 货车一次运货花费500元,每辆 货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由 、 两个工程公司承担建设,已知 工程公司单独建设完成此项工程需要180天, 工程公司单独施工45天后, 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.
(1)求 工程公司单独建设完成此项工程需要多少天?
(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工, 工程公司建设其中一部分用了 天完成, 工程公司建设另一部分用了 天完成,其中 , 均为正整数,且 , ,求 、 两个工程公司各施工建设了多少天?
众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到 地和 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
目的地 车型 |
地(元 辆) |
地(元 辆) |
大货车 |
900 |
1000 |
小货车 |
500 |
700 |
现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往 地,其余前往 地,设前往 地的大货车有 辆,这20辆货车的总运费为 元.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)求 与 的函数解析式,并直接写出 的取值范围;
(3)若运往 地的物资不少于140吨,求总运费 的最小值.
我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:
“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有 , 人,则可以列方程组 .
中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为( )
A. B.
C. D.
对于任意一个四位数 ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数 为"共生数".例如: ,因为 ,所以3507是"共生数"; ,因为 ,所以4135不是"共生数".
(1)判断5313,6437是否为"共生数"?并说明理由;
(2)对于"共生数" ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记 .求满足 各数位上的数字之和是偶数的所有 .
《九章算术》是中国传统数学的重要著作,书中有一道题"今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?"译文:"五只雀、六只燕,共重1斤(古时1斤 两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?"设雀重 两,燕重 两,可列出方程组
A. |
|
B. |
|
C. |
|
D. |
|
为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对 , 两个玉米品种进行实验种植对比研究.去年 、 两个品种各种植了10亩.收获后 、 两个品种的售价均为 元/kg,且 品种的平均亩产量比A品种高100千克, 、 两个品种全部售出后总收入为 元.
(1)求 、 两个品种去年平均亩产量分别是多少千克?
(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加 和 .由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨 ,而A品种的售价保持不变, 、 两个品种全部售出后总收入将增加 .求a的值.
某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?