“神舟”六号飞船完成了预定空间科学和技术试验任务后,返回舱于2005年10月17日4时11分开始从太空向地球表面按预定轨道返回,在离地10km的高度打开阻力降落伞减速下降,这一过程中若返回舱所受阻力与速度的平方成正比,比例系数(空气阻力系数)为k,设返回舱总质量M=3000kg,所受空气浮力恒定不变,且认为竖直降落。从某时刻开始计时,返回舱的运动v-t图象如图中的AD曲线所示,图中AB是曲线在A点的切线,切线交于横轴一点B的坐标为(8,0),CD是平行横轴的直线,交纵轴于C点C的坐标为(0,8)。g=10m/s2,请解决下列问题:
(1)在初始时刻v0=160m/s时,它的加速度多大?
(2)推证空气阻力系数k的表达式并算出其数值。
(3)返回舱在距离高度h=1m时,飞船底部的4个反推力小火箭点火工作,使其速度由8m/s迅速减至1m/s后落在地面上,若忽略燃料质量的减少对返回舱总质量的影响,并忽略此阶段速度变化而引起空气阻力的变化,试估算每支小火箭的平均推力(计算结果取两位有效数字)
如图所示,质量M=4kg的木板B静止于光滑的水平面上,其左端带有挡板,上表面长L=1m,木板右端放置一个质量m=2kg的木块A(可视为质点),A与B之间的动摩擦因素μ=0.2。现在对木板B施加一个水平向右的恒力F=14N,使B向右加速运动,经过一段时间后,木块A将与木板B左侧的挡板相碰撞,在碰撞前的瞬间撤去水平恒力F。已知该碰撞过程时间极短且无机械能损失,假设A、B间的最大静摩擦力跟滑动摩擦力相等,g取10m/s2。,试求:
(1)撤去水平恒力F的瞬间A、B两物体的速度大小vA、VB分别多大
(2)此过程F所做的功;
(3)撤去水平恒力F前因摩擦产生的热量。
某学习小组对一辆自制小遥控汽车的性能进行研究。他们让这辆汽车在水平地面上由静止开始运动,并将小车运动的全过程记录下来,通过数据处理得到如图所示的v-t图,已知小车在0~ts内做匀加速直线运动,ts~10s内小车牵引力的功率保持不变,且7s~10s为匀速直线运动;在10s末停止遥控,让小车自由滑行,小车质量m=1kg,整个过程小车受到的阻力Ff大小不变。求
⑴小车受到阻力Ff的大小。
⑵在ts~10s内小车牵引力功率P。
⑶小车在加速运动过程中的总位移x。
(15分)如图所示,摩托车演员作特技表演,当到达高台底端时关闭油门,从底端以初速度v0=20m/s冲上顶部水平的高台,然后从顶部水平飞出(不计空气阻力),摩托车和人落到缓冲垫上(图中未画出),摩托车落地速度大小为
v=10 m/s,已知平台顶部距缓冲垫的高度为H=10 m,g=10 m/s2。试求摩托车和人飞行
的水平距离。(结果取两位有效数字)
如图,在水平向右的匀强电场中,自A点以初速度v0竖直向上抛出一质量为m的带电物块,经最高点P返回到与A点在同一水平面上的B点(图中B点未画出),连接AB,自P点向AB作垂线,垂足为Q,测得hPQ∶sAB= 1∶2,求
(1)物块重力与电场力的大小之比
(2)在物块由A至B的运动过程中,物块的动能与电势能的和有一个最小值,求出现这个最小值时物块的位置和速度大小
(3)物块到达B点时的速度
如图所示,AB为光滑的水平面,BC是倾角为α的足够长的光滑斜面(斜面体固定不动)。AB、BC间用一小段光滑圆弧轨道相连。一条长为L的均匀柔软链条开始时静止的放在ABC面上,其一端D至B的距离为L-a。现自由释放链条,则:
⑴链条下滑过程中,系统的机械能是否守恒?简述理由;
⑵链条的D端滑到B点时,链条的速率为多大?
如图,半径为R的1/4圆弧支架竖直放置,支架底AB离地的距离为2R,圆弧边缘C处有一小定滑轮,一轻绳两端系着质量分别为m1与m2的物体,挂在定滑轮两边,且m1>m2,开始时m1、m2均静止,m1、m2可视为质点,不计一切摩擦。求:
⑴ m1释放后经过圆弧最低点A时的速度;
⑵ 若m1到最低点时绳突然断开,求m1落地点离A点水平距离;
⑶ 为使m1能到达A点,m1与m2之间必须满足什么关系?
如图所示,挡板P固定在足够高的水平桌面上,小物块A和B大小可忽略,它们分别带有+QA和+QB的电荷量,质量分别为mA和mB.两物块由绝缘的轻弹簧相连,一不可伸长的轻绳跨过滑轮,一端与B连接,另一端连接一轻质小钩,整个装置处于方向水平向左的匀强电场中,电场强度为E.开始时A、B静止,已知弹簧的劲度系数为k,不计一切摩擦及A、B间的库仑力,A、B所带电荷量保持不变,B一直在水平面上运动且不会碰到滑轮.试求
(1) 开始A、B静止时,挡板P对物块A的作用力大小;
(2) 若在小钩上挂一质量为M的物块C并由静止释放,当物块C下落到最大距离时物块A对挡板P的压力刚好为零,试求物块C下落的最大距离;
(3) 若C的质量改为2M,则当A刚离开挡板P时,B的速度多大?
如图所示,质量m1="0.3" kg的小车静止在光滑的水平面上,车长L="15" m,现有质量m2="0.2" kg可视为质点的物块,以水平向右的速度v0="2" m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数=0.5,取g="10" m/s2,求
(1) 物块在车面上滑行的时间t;
(2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v0/不超过多少。
如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R。一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块能通过圆形轨道的最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度)。求物块初始位置相对于圆形轨道底部的高度h的取值范围。
图示为修建高层建筑常用的塔式起重机。在起重机将质量m=5×103 kg的重物竖直吊起的过程中,重物由静止开始向上作匀加速直线运动,加速度a="0.2" m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做vm="1.02" m/s的匀速运动。取g="10" m/s2,不计额外功。求:
(1) 起重机允许输出的最大功率。
(2) 重物做匀加速运动所经历的时间和起重机在第2秒末的输出功率。
质量为M的圆环用细线(质量不计)悬挂着,将两个质量均为m的有孔小珠套在此环上,且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求:
(1)在圆环不动的条件下,悬线中的张力T随cosθ变化的函数关系,并求出张力T的极小值及相应的角θ(θ为小珠与圆环圆心连线与竖直方向的夹角)
(2)小球与圆环的质量比m/M至少为多大时圆环才有可能上升?
将一测力传感器连接到计算机上就可以测量快速变化的力。图甲表示小滑块(可视为质点)沿固定的光滑半球形容器内壁在竖直平面内点之间来回滑动。点与O点连线与竖直方向之间夹角相等且都为,均小于100,图乙表示滑块对器壁的压力F随时间t变化的曲线,且图中t=0为滑块从A点开始运动的时刻。试根据力学规律和题中(包括图中)所给的信息,求小滑块的质量、容器的半径及滑块运动过程中的守恒量。(g取10m/s2)
人造地球卫星绕地球旋转时,既具有动能又具有引力势能(引力势能实际上是卫星与地球共有的,简略地说此势能是人造卫星所具有的).设地球的质量为M,以卫星离地还需无限远处时的引力势能为零,则质量为m的人造卫星在距离地心为r处时的引力势能为EP=-GMm/r(G为万有引力常量). 当物体在地球表面的速度等于或大于某一速度时,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造卫星,这个速度叫做第二宇宙速度.用R表示地球的半径,M表示地球的质量,G表示万有引力常量.试写出第二宇宙速度的表达式.