质量为M的圆环用细线(质量不计)悬挂着,将两个质量均为m的有孔小珠套在此环上,且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求:(1)在圆环不动的条件下,悬线中的张力T随cosθ变化的函数关系,并求出张力T的极小值及相应的角θ(θ为小珠与圆环圆心连线与竖直方向的夹角)(2)小球与圆环的质量比m/M至少为多大时圆环才有可能上升?
如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d=40cm.电源电动势E=24V,内电阻r=1,电阻R=15.闭合开关S,待电路稳定后,将一带正电的小球从A板上方距离为d=40cm处由静止开始释放.若小球带电量为q=,质量为m=,不考虑空气阻力(取g=10m/s2).求: (1) 滑动变阻器接入电路的阻值为多大时,小球恰能到达B板 (2) 在满足第(1)问的条件下,电源的输出功率是多大.
如图所示,固定的光滑水平绝缘轨道与竖直放置的光滑绝缘的圆形轨道平滑连接,圆形轨道处于水平向右的匀强电场中,圆形轨道的最低点有A、B、C、D四个小球,已知,A球带正电,电量为q,其余小球均不带电.电场强度,圆形轨道半径为R=0.2m.小球C、D与处于原长的轻弹簧2连接,小球A、B中间压缩一轻且短的弹簧,轻弹簧与A、B均不连接,由静止释放A、B后,A恰能做完整的圆周运动.B被弹开后与C小球碰撞且粘连在一起,设碰撞时间极短. g取10m/s2,求: (1) A球刚离开弹簧时,速度为多少 (2) 弹簧2最大弹性势能.
处于静止状态的某原子核X,发生α衰变后变成质量为M的原子核Y,被释放的α粒子垂直射人磁感强度为B的匀强磁场中,测得其圆周运动的半径为r,设α粒子质量为m,质子的电量为e,试求: (1)衰变后α粒子的速率和动能Eka; (2)衰变后Y核的速率和动能Eky; (3)衰变前X核的质量Mx.
两个放射性元素样品A、B,当A有15/16的原子核发生衰变时,B恰好有63/64的原子核发生衰变,求A和B的半衰期之比TA:TB为多少?
为确定爱因斯坦的质能方程的正确性,设计了如下实验:用动能为0MeV的质子轰击静止的锂核,生成两个粒子,测得两个粒子的动能之和为MeV,已知质子、粒子、锂粒子的质量分别取、、,求: (1)写出该反应方程。 (2)通过计算说明正确。(1u = 1.6606×10-27㎏)