如图甲所示的电路中,R1、R2均为定值电阻,且R1=100 Ω,R2阻值未知,R3为一滑动变阻器。当其滑片P从左端滑至右端时,测得电源的路端电压随电源中流过的电流变化图线如图乙所示,其中A、B两点是滑片P在变阻器的两个不同端点得到的。求:
(1)电源的电动势和内阻;
(2)定值电阻R2的阻值;
(3)滑动变阻器的最大阻值。
我国不少省市ETC联网正式启动运行,ETC是电子不停车收费系统的简称.汽车分别通过ETC通道和人工收费通道的流程如图所示.假设汽车以正常行驶速度v1=16 m/s朝收费站沿直线行驶,如果过ETC通道,需要在距收费站中心线前d=8 m处正好匀减速至v2=4 m/s,匀速通过中心线后,再匀加速至v1正常行驶;如果过人工收费通道,需要恰好在中心线处匀减速至零,经过t0=25 s缴费成功后,再启动汽车匀加速至v1正常行驶.设汽车在减速和加速过程中的加速度大小分别为a1=2 m/s2、a2=1 m/s2.求:
(1)汽车过ETC通道时,从开始减速到恢复正常行驶过程中的位移大小;
(2)汽车通过ETC通道比通过人工收费通道速度再达到v1时节约的时间Δt是多少?
用同种材料制成倾角30°的斜面和长水平面,斜面长2.4m且固定,一小物块从斜面顶端以沿斜面向下的初速度v0开始自由下滑,当v0=2m/s时,经过0.8s后小物块停在斜面上.多次改变v0的大小,记录下小物块从开始运动到最终停下的时间t,作出t﹣v0图象,如图所示,求:
(1)小物块与该种材料间的动摩擦因数为多少?
(2)某同学认为,若小物块初速度为4m/s,则根据图象中t与v0成正比推导,可知小物块运动时间为1.6s.以上说法是否正确?若不正确,说明理由并解出你认为正确的结果.
如图甲所示,一半径R=1m、竖直圆弧形光滑轨道,与斜面相切于B处,圆弧轨道的最高点为M,斜面倾角θ=370,t=0时刻,有一质量m=2Kg的物块从A点开始沿斜面上滑,其在斜面上运动的速度变化规律如图乙所示,若物块恰能到达M点,(取g=10m/s2,sin370=0.6,cos370=0.8),求:
(1)物块经过B点时的速度VB
(2)物块在斜面上向上滑动的过程中克服摩擦力做的功.
如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53o的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值为R=0.4Ω的定值电阻,上端开口。整个空间有垂直斜面向上的匀强磁场,磁感应强度B=2T.一质量为m=0.5kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1Ω,电路中其余电阻不计.现用一质量M=2.86kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放M,当M下落高度h=2.0m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好).不计空气阻力,sin53o=0.8,cos53o=0.6,g取10m/s2.求
(1)ab棒沿斜面向上运动的最大速度Vm
(2)ab棒从开始运动到匀速运动的这段时间内流过电阻R的总电荷量q.
(3)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热QR
如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为,现有质量为m的小球以水平速度飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g)。求:
①物块A相对B静止后的速度大小;
②木板B至少多长。
真空中有如图所示矩形区域,该区域总高度为2h、总宽度为4h,其中上半部分有磁感应强度为B、垂直纸面向里的水平匀强磁场,下半部分有竖直向下的匀强电场,x轴恰为水平分界线,正中心恰为坐标原点O.在x=2.5h处有一与x轴垂直的足够大的光屏(图中未画出).质量为m、电荷量为q的带负电粒子源源不断地从下边界中点P由静止开始经过匀强电场加速,通过坐标原点后射入匀强磁场中.粒子间的相互作用和粒子重力均不计.
(1)若粒子在磁场中恰好不从上边界射出,求加速电场的场强E;
(2)若加速电场的场强E为(1)中所求E的4倍,求粒子离开磁场区域处的坐标值;
(3)若将光屏向x轴正方向平移,粒子打在屏上的位置始终不改变,则加速电场的场强E′多大?粒子在电场和磁场中运动的总时间多大?
在如图(甲)所示的电路中,电阻R1和R2都是纯电阻,它们的U-I图像分别如图(乙)中Oa、Ob所示。电源的电动势E=7.0V,内阻忽略不计。
(1)调节滑动变阻器R3,使电阻R1和R2消耗的电功率恰好相等,求此时电阻R1和R2的阻值为多大?R3接入电路的阻值为多大?
(2)调节滑动变阻器R3,使A、B两点的电势相等,这时电阻R1和R2消耗的电功率各是多少?
如图所示,直角坐标系xOy位于竖直平面内,y轴竖直向上.第Ⅲ、Ⅳ象限内有垂直纸面向外的匀强磁场,第Ⅳ象限同时存在方向平行于y轴的匀强电场(图中未画出).一带电小球从x轴上的A点由静止释放,恰好从P点垂直于y轴进入第Ⅳ象限,然后做圆周运动,从Q点垂直于x轴进入第Ⅰ象限,Q点距O点的距离为d,重力加速度为g.根据以上信息,可以求出的物理量有( )
A.圆周运动的速度大小 | B.电场强度的大小和方向 |
C.小球在第Ⅳ象限运动的时间 | D.磁感应强度大小 |
霍尔推进器某局部区域可抽象成如图所示的模型。 平面内存在竖直向下的匀强电场和垂直坐标平面向里的匀强磁场,磁感应强度为 。质量为 、电荷量为 的电子从 点沿 轴正方向水平入射,入射速度为 时,电子沿 轴做直线运动;入射速度小于 时,电子的运动轨迹如图中的虚线所示,且在最高点与在最低点所受的合力大小相等。不计重力及电子间相互作用。
(1)求电场强度的大小 ;
(2)若电子入射速度为 ,求运动到速度为 时位置的纵坐标 ;
(3)若电子入射速度在 范围内均匀分布,求能到达纵坐标 位置的电子数 占总电子数 的百分比。
如图,一竖直圆管质量为 ,下端距水平地面的高度为 ,顶端塞有一质量为 的小球。圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直。已知 ,球和管之间的滑动摩擦力大小为 , 为重力加速度的大小,不计空气阻力。
(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;
(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度;
(3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件。
如图甲所示,有一倾角为300的光滑固定斜面,斜面底端的水平面上放一质量为M的木板.开始时质量为m =1kg的滑块在水平向左的力F作用下静止在斜面上,今将水平力F变为水平向右大小不变,当滑块滑到木板上时撤去力F(假设斜面与木板连接处用小圆弧平滑连接)。此后滑块和木板在水平上运动的v-t图象如图乙所示,g=10 m/s2.求
(1)水平作用力F的大小;
(2)滑块开始下滑时的高度;
(3)木板的质量。
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,有一区域足够大的匀强磁场,磁感应强度为B,磁场方向与水平放置的导轨垂直,导轨宽度为L,右端接有电阻R,MN是一根质量为m的金属棒,金属棒与导轨垂直放置,且接触良好,金属棒与导轨电阻均不计,金属棒与导轨间的动摩擦因数为μ,现给金属棒一水平冲量,使它以初速度沿导轨向左运动,已知金属棒在整个运动过程中,通过任一截面的总电荷量为q,求:
(1)金属棒运动的位移s;
(2)金属棒运动过程中回路产生的焦耳热Q;
(3)金属棒运动的时间t