在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示。不计粒子的重力,求:(1)M、N两点间的电势差UMN;(2)粒子从M点运动到P点的总时间t。
如图所示,长为L (L=ab=dc),高为L(L=bc=ad)的矩形区域abcd内存在着匀强电场。电量为q、质量为m、初速度为的带电粒子从a点沿ab方向进入电场,不计粒子重力。求: (1)若粒子从c点离开电场,求电场强度的大小; (2)若粒子从bc边某处离开电场时速度为,求电场强度的大小。
如图所示,竖直面内有一绝缘轨道,AB部分是光滑的四分之一圆弧,圆弧半径R=0.5m,B处切线水平,BC部分为水平粗糙直轨道。有一个带负电的小滑块(可视为质点)从A点由静止开始下滑,运动到直轨道上的P处刚好停住。小滑块的质量m=1kg,带电量为保持不变,滑块小轨道BC部分间的动摩擦因数为μ=0.2,整个空间存在水平向右的匀强电场,电场强度大小为E=4.0×102N/C.(g=10m/s2) (1)求滑块到达B点瞬间的速度大小 (2)求滑块到达B点瞬间对轨道的压力大小。 (3)求BP间的距离.
如图所示,用长为的绝缘细线悬挂一带电小球,小球质量为m。现加一水平向右、场强为E的匀强电场,平衡时小球静止于A点,细线与竖直方向成θ角。、 (1)求小球所带电荷量的大小; (2)若将细线剪断,小球将在时间t内由A点运动到电场中的P点(图中未画出),求A、P两点间的距离;(3)求A、P两点间电势差的
一带电质点从图中的A点竖直向上射入一水平方向的匀强电场中,质点运动到B点时,速度方向变为水平,已知质点质量为m,带电量为q,AB间距离为L,且AB连线与水平方向成角,求(注意:图中vA、vB未知) (1)质点从A运动到B时间; (2)电场强度E;
如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ,重力加速度为g。 (1)当纸板相对砝码运动时,求纸板所受摩擦力的大小; (2)要使纸板相对砝码运动,求所需拉力的大小; (3)本实验中,m1 =0.5kg,m2 =0.1kg,μ=0.2,砝码与纸板左端的距离d=0.1m,取g ="10" m/ s2。若砝码移动的距离超过l ="0.002" m,人眼就能感知。为确保实验成功,纸板所需的拉力至少多大?