如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场。一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度v0开始运动。当电子第一次穿越x轴时,恰好到达C点;当电子第二次穿越x轴时,恰好到达坐标原点;当电子第三次穿越x轴时,恰好到达D点。C、D两点均未在图中标出。已知A、C点到坐标原点的距离分别为d、2d。不计电子的重力。求(1)电场强度E的大小;(2)磁感应强度B的大小;(3)电子从A运动到D经历的时间t.
如图所示,轻线一端系一质量为m的小球,另一端穿过光滑小孔套在正下方的图钉A上,此时小球在光滑的水平平台上做半径为a、角速度为ω的匀速圆周运动.现拔掉图钉A让小球飞出,此后轻线又被A正上方距A高为h的图钉B套住,稳定后,小球又在平台上做匀速圆周运动.求: (1)图钉A拔掉前,轻线对小球的拉力大小. (2)从拔掉图钉A到被图钉B套住前小球做什么运动?所用的时间为多少? (3)小球最后做圆周运动的角速度.
如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L=3 m,围墙外马路宽x=10 m,为使小球从屋顶水平飞出落在围墙外的马路上,求小球离开屋顶时的速度v的大小范围.(g取10 m/s2)
如图所示,竖直圆筒内壁光滑,半径为R,顶部有入口A,在A的正下方h处有出口B,一质量为m的小球从人口A沿圆筒壁切线方向水平射人圆筒内,要使球从B处飞出,小球进入入口A处的速度vo应满足什么条件?
如图甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0m,NQ两端连接阻值R=3.0Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=300。一质量m=0.20kg,阻值r=0.50Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60kg的重物相连。细线与金属导轨平行。金属棒沿导轨向上滑行的速度v与时间t之间的关系如图乙所示,已知金属棒在0~0.3s内通过的电量是0.3~0.6s内通过电量的1/3,g=10m/s2,求: (1)金属棒的最大加速度 (2)磁感应强度的大小 (3)0~0.3s内棒通过的位移; (4) 金属棒在0~0.6s内产生的热量。
在O点有一波源,t=0时刻开始向+y方向振动,形成沿x轴正方向传播的一列简谐横波。距离O点为x1=3m的质点A的振动图象如图甲所示;距离O点为x2=4m的质点B的振动图象如图乙所示。求:(1)该波的周期(2)该波的波速