如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5 m,离水平地面的高度H=0.8 m,物块平抛落地过程水平位移的大小s=0.4 m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.求:
(1)物块做平抛运动的初速度大小v0;
(2)物块与转台间的动摩擦因数μ.
如图所示,在水平面上固定一个高度为h1="0.55" m的平台ABCD,其中AB部分是L=1.6m的水平轨道,BCD为光滑的弯曲轨道,轨道最高处C处可视为半径为r=4m的小圆弧,现一个质量为m ="1kg" 的滑块以初速度v0=5m/s从A点向B点运动,当滑块滑到平台顶点C处后作平抛运动,落到水平地面且落地点的水平射程为x=0.8m,轨道顶点距水平面的高度为h2 =0.8m,(平抛过程中未与平台相撞)(取g=10m/s2)求:
(1)滑块在轨道顶点处对轨道的压力?
(2)滑块与木板间的动摩擦因数μ?
如图所示,一条轨道固定在竖直平面内,粗糙的ab段水平,bcde段光滑,cde段是以O为圆心、R为半径的一小段圆弧。可视为质点的物块A和B紧靠在一起,静止于b处,A的质量是B的3倍。两物块在足够大的内力作用下突然分离,分别向左、右始终沿轨道运动。B到d点时速度沿水平方向,此时轨道对B的支持力大小等于B所受重力的3/4,A与ab段的动摩擦因数为μ,重力加速度g,
求:(1)物块B在d点的速度大小。
(2)物块A滑行的距离s和滑行的时间t。
如图所示,竖直平面内的3/4圆弧形光滑管道半径略大于小球半径,管道中心到圆心距离为R,A端与圆心O等高,AD为水平面,B点在O点的正下方,一小球自A点正上方由静止释放,自由下落至A点进入管道,当小球到达B点时,管壁对小球的弹力大小为小球重力的9倍.求:
(1)小球到B点时的速度;
(2)释放点距A的竖直高度;
(3)落点C与A的水平距离。
如下图是阿毛同学的漫画中出现的装置,描述了一个“吃货”用来做“糖炒栗子”的“萌”事儿:将板栗在地面小平台上以一定的初速经两个四分之一圆弧衔接而成的轨道,从最高点P飞出进入炒锅内,利用来回运动使其均匀受热。我们用质量为m的小滑块代替栗子,借这套装置来研究一些物理问题。设大小两个四分之一圆弧半径为2R和R,小平台和圆弧均光滑。将过锅底的纵截面看作是两个斜面AB、CD和一段光滑圆弧BC组成,滑块与斜面间的动摩擦因数为0.25,且不随温度变化。两斜面倾角均为,AB=CD=2R,A、D等高,D端固定一小挡板,碰撞不损失机械能。滑块的运动始终在包括锅底最低点的竖直平面内,重力加速度为g.
(1)如果滑块恰好能经P点飞出,为了使滑块恰好沿AB斜面进入锅内,应调节锅底支架高度使斜面的A、D点离地高为多少?
(2)接(1)问,试通过计算用文字描述滑块的运动过程。
(3)对滑块的不同初速度,求其通过最高点P和小圆弧最低点Q时受压力之差的最小
值。
一光滑圆锥体固定在水平面上,OC⊥AB, ∠AOC=30o,一条不计质量,长为l(l<OA)的细绳一端固定在顶点O,另一端拴一质量为m的物体(看作质点)。物体以速度v绕圆锥体的轴OC在水平面内作匀速圆周运动,如图所示。求:
(1)当物体刚好不压圆锥体时线速度v0;
(2)当物体线速度时,分别求出绳和圆锥体对物体的作用力;
(3)当物体线速度时,分别求出绳和圆锥体对物体的作用力;
如图所示,半径R=0.4m,内径很小的光滑半圆管竖直放置,两个质量均为m=1kg的小球A、B以不同速率进入管内,并通过最高点C后沿水平方向抛出。A通过最高点C时的速度v1=4m/s,,B通过最高点C时的速度大小v2=1m/s,求:
(1)A从C点抛出到落地所用的时间;
(2)求A、B两球落地点间的距离;
(3)A、B通过C点时对管壁的压力各是多大?对上管壁还是下管壁?
如图,为修建高层建筑常用的塔式起重机.在起重机将质量m=5×104 kg的重物竖直吊起的过程中,重物由静止开始向上做匀加速直线运动,加速度a=0.2 m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做vm=1.02 m/s的匀速运动.取g=10 m/s2,不计额外功.求:
(1)起重机允许输出的最大功率.
(2)重物做匀加速运动所经历的时间和起重机在第2秒末的输出功率.
如图所示,物块Α、Β用一劲度系数为k=200N/m的轻弹簧相连静止于水平地面上,Α物体质量mA=2kg, Β物体质量mB="4Kg." 现用一恒力F=30N竖直向上拉物体A, 使Α从静止开始运动,当Α运动到最高点时Β刚好要离开地面但不能继续上升。若弹簧始终处于弹性限度内,取g = 10m/s2。求:
(1)Β刚要离开地面时,拉力F做的功;
(2)Β刚要离开地面时Α的加速度大小;
(3)从Α开始运动到Α到达最高点的过程中弹簧弹力对Α做的功。
如图所示,AB为固定在竖直平面内的1/4光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R,质量为m的小球由A点静止释放,试求:
(1)小球滑到最低点B时,小球速度v的大小;
(2)小球刚到达最低点B时,轨道对小球支持力FN的大小;
(3)球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h <R),则小球在曲面上克服摩擦力所做的功Wf。
山谷中有三块大石头和一根不可伸长的青藤,其示意图如下。图中A、B、C、D均为石头的边缘点,O为青藤的固定点,h1=1.8m,h2=4.0m,x1=4.8m,x2=8.0m。开始时,质量分别为M=10kg和m=2kg的大小两只滇金丝猴分别位于左边和中间的石头上,当大猴发现小猴将受到伤害时,迅速从左边石头A点起水平跳到中间石头,大猴抱起小猴跑到C点,抓住青藤的下端荡到右边石头的D点,此时速度恰好为零。运动过程中猴子均看成质点,空气阻力不计,重力加速度g=10m/s2,求:
(1)大猴子水平跳离的速度最小值;
(2)猴子抓住青藤荡起时的速度大小;
(3)荡起时,青藤对猴子的拉力大小。
质量为2kg的物体在光滑水平面上,受到水平方向的恒定拉力的作用,从静止开始经3s速度达到6m/s.
求:(1)这一过程中,拉力所做的功;(2)第3s末拉力的瞬时功率.
质量为m =5×103 kg的汽车,额定功率为P =6×104W,如果在行驶中,汽车受到的阻力为f =3×103N,求:
(1) 汽车能够达到的最大速度;
(2) 如果汽车以额定功率行驶,那么当汽车速度为5m/s时,其加速度;
(3) 如果汽车以10m/s的速度匀速行驶,发动机的实际功率。
如图所示,粗糙的斜面AB下端与光滑的圆弧轨道BCD相切于B,整个装置竖直放置,C是最低点,圆心角θ=37°,D与圆心O等高,圆弧轨道半径R =1m,斜面长L=4m,现有一个质量m =0.1kg的小物体P从斜面AB上端A点无初速下滑,物体P与斜面AB之间的动摩擦因数为μ=0.25。不计空气阻力,g=10m/s2,sin37o=0.6,cos37o=0.8,求:
(1)物体P第一次通过C点时的速度大小;
(2)物体P第一次通过C点时对轨道的压力;
(3)物体P第一次离开D点后在空中做竖直上抛运动到最高点E,接着从空中又返回到圆轨道和斜面,在这样多次反复的整个运动过程中,物体P对C点处轨道的最小压力min。