为测量小铜块与瓷砖表面间的动摩擦因数,一同学将贴有标尺的瓷砖的一端放在水平桌面上,形成一倾角为 α的斜面(已知sin α=0.34,cos α=0.94),小铜块可在斜面上加速下滑,如图所示。该同学用手机拍摄小铜块的下滑过程,然后解析视频记录的图像,获得5个连续相等时间间隔(每个时间间隔Δ T=0.20 s)内小铜块沿斜面下滑的距离 s i( i=1,2,3,4,5),如下表所示。
s 1 |
s 2 |
s 3 |
s 4 |
s 5 |
5.87cn |
7.58cm |
9.31cm |
11.02cm |
12.74cm |
由表中数据可得,小铜块沿斜面下滑的加速度大小为_______m/s 2,小铜块与瓷砖表面间的动摩擦因数为_________。(结果均保留2位有效数字,重力加速度大小取9.80 m/s 2)
如图所示,轻杆BC的C点用光滑铰链与墙壁固定,杆的B点通过水平细绳AB使杆与竖直墙壁保持30°的夹角.若在B点系一细绳BD,其下端悬挂一质量m=30kg的重物,g取10m/s2.试求:轻杆BC和绳AB所受弹力的大小.
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.
(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;
(2)要使纸板相对砝码运动,求所需拉力的大小;
(3)本实验中,m1=0.5kg,m2=0.1kg,μ=0.2,砝码与纸板左端的距离d=0.1m,取g=10m/s2.若砝码移动的距离超过l=0.002m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?
在倾角为30°的斜面上,固定一挡板,在挡板和斜面之间放置同一重为G=20N密度均匀的光滑圆球,如图甲和乙所示两种情况.甲图中的挡板保持竖直,乙图中的档板保持与斜面垂直,圆球处于静止状态,试分别求出两种情况下斜面对球作用力的大小.
如图所示,弹簧AB原长为35cm,A端挂一个重50N的物体,手执B端,将物体置于倾角为30°的斜面上.当物体沿斜面匀速下滑时,弹簧长度为40cm;当物体匀速上滑时,弹簧长度为50cm,试求:
(1)弹簧的劲度系数k;
(2)物体与斜面的滑动摩擦力.
如图所示为一轻质弹簧的长度l和弹力F大小的关系图象,试由图线确定:
(1)弹簧的原长;
(2)弹簧的劲度系数;
(3)弹簧长为0.20m时弹力的大小.
如图所示,四分之三周长的细圆管的半径R=0.4m,管口B和圆心O在同一水平面上,D是圆管的最高点,其中半圆周BE段存在摩擦,BC和CE段动摩擦因数相同,ED段光滑;质量m=0.5kg、直径稍小于圆管内径的小球从距B正上方高H=2.5m的A处自由下落,从B处进入圆管继续运动直到圆管的最高点D飞出,恰能再次飞到B处.重力加速度g=10m/s2.求:
(1)小球飞离D点时的速度;
(2)小球在D点时对轨道的压力大小和方向;
(3)小球从B点到D点过程中克服摩擦所做的功.
粗糙水平轨道AB与竖直平面内的光滑圆弧轨道BC相切于B点,一物块(可看成为质点)在水平向右的恒力F作用下自水平轨道的P点处由静止开始匀加速运动到B,此时撤去该力,物块滑上圆弧轨道,在圆弧轨道上运动一段时间后,回到水平轨道,恰好返回到P点停止运动,已知物块在圆弧轨道上运动时对轨道的压力最大值为F1=2.02N,最小值为F2=1.99N,当地重力加速度为g=10m/s2.
(1)求物块的质量m的大小;
(2)若已知圆弧轨道的半径为R=8m,P点到B点的距离是x=0.5m,求F的大小.
一辆质量为2吨的汽车由静止开始沿一倾角为300的足够长斜坡向上运动,汽车发动机的功率保持48kW不变,行驶120m后达到最大速度。已知汽车受到地面的摩擦阻力为2000N。(g=10m/s2)求:
(1)汽车可以达到的最大速度
(2)汽车达到最大速度所用的时间(结束保留一位小数)
在倾角为α的斜面上,一条质量不计的皮带一端固定在斜面上端,另一端绕过一中间有一圈凹槽的圆柱体,并用与斜面夹角为β的力F拉住,使整个装置处于静止状态,如图所示.不计一切摩擦,圆柱体质量为m,求拉力F的大小和斜面对圆柱体的弹力F N 的大小.
某同学分析过程如下:
将拉力F沿斜面和垂直于斜面方向进行分解.
沿斜面方向:Fcos β=mgsin α ①
沿垂直于斜面方向:Fsin β+F N =mgcos α ②
问:你同意上述分析过程吗?若同意,按照这种分析方法求出F及F N 的大小;若不同意,指明错误之处并求出你认为正确的结果.
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
质量为1kg的小球用长为0.5m的细线悬挂在O点,O点距地面高度为1m,如果使小球绕OO′轴在水平面内做圆周运动,若细线受到拉力为12.5N就会被拉断。求:
(1)当小球的角速度为多大时线将断裂?
(2)小球落地点与悬点的水平距离。(g取10 m/s2)
如图所示,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左。静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E0,方向沿圆弧半径指向圆心O。离子质量为m、电荷量为q,、,离子重力不计。
(1)求圆弧虚线对应的半径R的大小;
(2)若离子恰好能打在QN板的中点上,求矩形区域QNCD内匀强电场场强E的值;
(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,且离子恰能从QN板下端飞出QNCD区域,求磁场磁感应强度B。
如图所示,水平轨道MN与竖直光滑半圆轨道相切于N点,轻弹簧左端固定在轨道的M点,将一质量为m=1kg的小物块靠在弹簧右端并压缩至O点,此时弹簧储有弹性势能Ep,现将小物块无初速释放,小物块恰能通过轨道最高点B,此后水平飞出再落回到水平面。已知ON的距离L=3.0m,小物块与水平轨道间的动摩擦因数μ=0.2,圆轨道半径R=0.4m,g取10 m/s2。求:
(1)小物块通过B点抛出后,落地点距N的水平距离x;
(2)弹簧储有的弹性势能Ep。