如图所示,质量为M=50kg的人通过光滑的定滑轮让质量为m=10kg的重物从静止开始向上做匀加速运动,并在2s内将重物提升了4m.若绳与竖直方向夹角为θ=370,求:(sin37°=0.6,cos37°=0.8,g=10m/s2)
(1)物体上升的加速度多大?
(2)人对绳子的拉力为多大?
(3)地面对人的摩擦力和人对地面的压力分别多大?
轻质弹簧的劲度系数k=2000N/m,用其水平拉着一个重为200 N的物体在水平面上运动,当弹簧的伸长量为4 cm时,物体恰在水平面上做匀速直线运动,
(1)物体与水平面间的动摩擦因数.
(2)当弹簧的伸长量为6 cm时,物体受到的水平拉力多大?这时物体受到的摩擦力有多大?
如图所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等,有一个带电粒子以垂直于x轴的初速度v0从x轴上的P点进入匀强电场中,并且恰好与y轴的正方向成45°角进入磁场,又恰好垂直x轴进入第Ⅳ象限的磁场,已知OP之间的距离为d,(不计粒子重力)求:
(1)带电粒子在磁场中做圆周运动的半径;
(2)带电粒子从进入磁场到第二次经过x轴,在磁场中运动的总时间;
(3)匀强磁场的磁感应强度大小。
质量为M的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t内前进的距离为s.耙地时,拖拉机受到的牵引力恒为F,受到地面的阻力为自重的k倍,耙所受阻力恒定,连接杆质量不计且与水平面的夹角θ保持不变。求:
(1)拖拉机的加速度大小;
(2)拖拉机对连接杆的拉力大小;
(3)时间t内拖拉机对耙做的功.
如图所示,在竖直平面内,由倾斜轨道AB、水平轨道BC和半圆形轨道CD连接而成的光滑轨道,AB与BC的连接处是半径很小的圆弧,BC与CD相切,圆形轨道CD的半径为R。质量为m的小物块从倾斜轨道上距水平面高为h=3R处由静止开始下滑。求:
(1)小物块通过B点时速度vB的大小;
(2)试通过计算说明,小物块能否通过圆形轨道的最高点D。
升降机地面上固定着一个倾角=37º的光滑斜面,用一条平行于斜面的细绳拴住一个质量m=2kg的小球,如图所示,当升降机以加速度a=2m/s2做竖直向上匀加速直线运动时,重力加速度g取10m/s2,,求:
(1)绳子对球的拉力T?
(2)小球对斜面的压力N?
一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,不计重力.求:
(1)粒子做圆周运动的半径R
(2)匀强磁场的磁感应强度B.
如图所示,倾角为θ=45°的粗糙平直导轨与半径为R的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内.一质量为m的小滑块从导轨上离地面高为h=3R的D处无初速下滑并进入圆环轨道.接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力.求:
(1)滑块运动到圆环最高点C时的速度的大小;
(2)滑块运动到圆环最低点时对圆环轨道压力的大小;
(3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功。
如图所示,ABCD竖直放置的光滑绝缘细管道,其中AB部分是半径为R的圆弧形管道,BCD部分是固定的水平管道,两部分管道恰好相切于B。水平面内的M、N、B三点连线构成边长为L等边三角形,MN连线过C点且垂直于BCD。两个带等量异种电荷的点电荷分别固定在M、N两点,电荷量分别为和。现把质量为、电荷量为的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A处静止释放,已知静电力常量为,重力加速度为。求:
(1)小球运动到B处时受到电场力的大小;
(2)小球运动到C处时的速度大小;
(3)小球运动到圆弧最低点B处时,小球对管道压力的大小。
如图所示,光滑水平轨道与半径为R的光滑竖直半圆轨道在B点平滑连接.在过圆心O的水平界面MN的下方分布有水平向右的匀强电场.现有一个质量为m、电荷量为q的带正电小球在水平轨道上的A点由静止释放,小球运动到C点离开半圆轨道后,经界面MN上的P点进入电场(P点恰好在A点的正上方,小球可视为质点,小球运动到C点之前所带电荷量保持不变,经过C点后所带电荷量立即变为零).已知A、B两点间的距离为2R,重力加速度为g.在上述运动过程中,求:
(1)电场强度E的大小;
(2)小球在半圆轨道上运动时的最大速率.
如图所示,轻质弹簧的劲度系数为20 N/cm,用其拉着一个重200 N的物体在水平面上运动.当弹簧的伸长量为4 cm时,物体恰在水平面上做匀速直线运动.
(1)求物体与水平面间的动摩擦因数;
(2)当弹簧的伸长量为6 cm时,物体受到的水平拉力有多大?这时物体受到的摩擦力有多大?
(3)如果在物体运动的过程中突然撤去弹簧,而物体在水平面上能继续滑行,这时物体受到的摩擦力有多大?
一根轻弹簧,其弹力F的大小与长度x的关系如图的线段a和b所示。求
(1)弹簧原长为多少?
(2)弹簧的劲度系数为多大?
(3)弹簧长度为6cm时,弹力大小为多少?
一根轻弹簧,其弹力F的大小与长度x的关系如图的线段a和b所示。求
(1)弹簧原长为多少?
(2)弹簧的劲度系数为多大?
(3)弹簧长度为6cm时,弹力大小为多少?
如图甲所示,是建筑工地将桩料打入泥土中以加固地基的打夯机示意图。打夯前先将桩料扶正立于地基之上。已知夯锤的质量为M=450kg,桩料的质量为m=50kg。每次打夯都通过卷扬机牵引将夯锤提升到距离桩顶h0=5m处再释放,让夯锤自由下落,夯锤砸在桩料上并不弹起,而是随桩料一起向下运动。
【两者碰撞时间极短,碰撞前后速度关系满足Mv0=(M+m)v】。桩料进入泥土后所受阻力,随打入深度h的变化关系如图乙所示,直线斜率k=5.05×104N/m。每次电动机需用20s的时间提升夯锤。提升夯锤时忽略加速和减速的过程,不计夯锤提升时的动能。g=10m/s2,求
(1)若卷扬机的工作效率为=80%,则在每次提升夯锤的过程中,卷扬机的输入功率。(结果保留2位有效数字)
(2)打完第一夯后,桩料进入泥土的深度。(假设打第一夯前,桩料未进入泥土)