如图所示,在竖直平面内,由倾斜轨道AB、水平轨道BC和半圆形轨道CD连接而成的光滑轨道,AB与BC的连接处是半径很小的圆弧,BC与CD相切,圆形轨道CD的半径为R。质量为m的小物块从倾斜轨道上距水平面高为h=3R处由静止开始下滑。求:(1)小物块通过B点时速度vB的大小;(2)试通过计算说明,小物块能否通过圆形轨道的最高点D。
(12分)如图所示,光滑斜面顶边与底边平行且水平,顶边高H=0.8m,斜面与水平面成θ=30°角,在斜面顶边上的A点以大小为v0=3m/s的初速度,分别沿平行于斜面底边方向和垂直于斜面底边在斜面内抛出两个相同小球,小球都是贴着斜面滑到斜面底边上的B、C处,试比较两个小球运动时间的长短。有同学这样认为:两小球初速度大小相等,根据机械能守恒定律,两小球到达斜面底端的末速度大小也相等,所以平均速度相等,因此两小球运动的时间也相等。你认为这种观点正确吗?如认为正确,请列式计算出两小球的运动时间;如认为不正确,请通过列式计算,比较两小球运动时间的长短。
(12分)质量分别为m1、m2的两木块重叠后放在光滑水平面上,如图所示,m1、m2间的动摩擦因数为μ(认为最大静摩擦力与滑动摩擦力相等),现在m2上施加随时间t增大的力F=kt,式中k是常数。⑴写出木块m1、m2的加速度a1、a2随时间t变化的关系式;⑵在给定坐标系内绘出a1、a2随时间t变化的图线,图线上若有转折点,请在坐标轴上标注出该点对应的坐标值。
(12分)⑴开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量,将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式;(已知引力常量为G,太阳的质量为。)⑵开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立,经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106s,试计算地球的质量。(引力常量为G=6.67×10-11N·m2/kg2,结果保留一位有效数字。)
如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场Ⅰ和Ⅱ,两电场的边界均是边长为L的正方形(不计电子所受重力)。(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置.(2)在电场Ⅰ区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置.(3)若将左侧电场Ⅱ整体水平向右移动L/n(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场Ⅰ区域内由静止释放电子的所有位置。
(15分)如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H,上端套着一个细环,棒和环的质量均为m,相互间最大静摩擦力等于滑动摩擦力kmg(k>1),断开轻绳,棒和环自由下落,假设棒足够长,与地面发生碰撞时,触地时间极短,无动能损失,棒在整个运动过程中始终保持竖直,空气阻力不计,求:⑴棒第一次与地面碰撞弹起上升过程中,环的加速度;⑵棒与地面第二次碰撞前的瞬时速度;⑶从断开轻绳到棒和环都静止,摩擦力对棒和环做的功分别是多少?