如图所示,竖直光滑圆轨道BCD固定在水平面AB上,轨道圆心为O,半径R=lm,轨道最低点与水平面相切于B点,C为轨道最高点,D点与圆心O等高。一质量m=1Kg的小物块,从水平面上以速度V0竖直向上抛出,抛出的初速度v0 =8m/s,物块从D点进入圆轨道,最终停在A点。若A、B间的距离为8m。g=l0m/s2。求:
(1)求物块运动到C点时,对轨道的压力为多大?
(2)求物块与水平面间的动摩擦因数μ。
(3)物块从B点运动到A点所用的时间。
如图所示,质量为2kg的物体放在水平地板上,用一原长为8cm的轻质弹簧水平拉该物体,当其刚开始运动时,弹簧的长度为11cm,当弹簧拉着物体匀速前进时,弹簧的长度为10.5cm,已知弹簧的劲度系数k=200N/m。求:
(1)物体所受的最大静摩擦力为多大?
(2)物体所受的滑动摩擦力为多大?
(3)物体与地板间的动摩擦因数是多少?(g均取10m/s2)
如图所示,光滑绝缘的圆形轨道BCDG位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.求:
(1)若滑块从水平轨道上距离B点为s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时的速度大小;
(2)在(1)的情况下,求滑块到达C点时对轨道的作用力大小;
(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
如图所示,竖直平面内,一带正电的小球,系于长为L的不可伸长的轻线一端,线的另一端固定为O点,它们处在匀强电场中,电场的方向水平向右,场强的大小为E.已知电场对小球的作用力的大小等于小球的重力.现先把小球拉到图中的P1处,使轻线伸直,并与场强方向平行,然后由静止释放小球.已知小球在经过最低点的瞬间,因受线的拉力作用,其速度的竖直分量突变为零,水平分量没有变化,(不计空气阻力)则小球到达与P1点等高的P2点时线上张力T为多少( )
A.mg | B.3mg | C.4mg | D.5mg |
一弹簧秤的秤盘A的质量m=1.5kg,盘上放一物体B,B的质量为M=10.5kg,弹簧本身质量不计,其劲度系数k=800N/m,系统静止时如图所示。现给B一个竖直向上的力F使它从静止开始向上做匀加速运动,已知在头0.20s内,F是变力,以后F是恒力,求F的最大值和最小值。(g取10m/s2)
如图所示,半径R=0.4 m的光滑圆弧轨道BC固定在竖直平面内,轨道的上端点B和圆心O的连线与水平方向的夹角θ=30°,下端点C为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上.质量m=0.1 kg的小物块(可视为质点)从空中A点以v0=2 m/s的速度被水平抛出,恰好从B点沿轨道切线方向进入轨道,经过C点后沿水平面向右运动至D点时,弹簧被压缩至最短,C、D两点间的水平距离L=1.2 m,小物块与水平面间的动摩擦因数μ=0.5,g取10 m/s2.求:
(1)小物块经过圆弧轨道上B点时速度vB的大小;
(2)小物块经过圆弧轨道上C点时对轨道的压力大小;
(3)弹簧的弹性势能的最大值Epm.
如图所示,质量为m的小球沿光滑的水平面冲上一光滑的半圆形轨道,轨道半径为R,小球在轨道最高点对轨道压力等于0.5mg,重力加速度为g,求:
(1)小球在最高点的速度大小;
(2)小球落地时,距最高点的水平位移大小;
(3)小球经过半圆轨道最低点时,对轨道的压力.
(2) 如图所示,半径分别为R和r的甲、乙两个光滑的圆形轨道安置在同一竖直平面上,轨道之间有一条水平轨道CD相通,一小球以一定的速度先滑上甲轨道,通过动摩擦因数为μ的CD段,又滑上乙轨道,最后离开两圆轨道。若小球在两圆轨道的最高点对轨道压力都恰好为零,试求水平CD段的长度。
如图所示,物块Α、Β用一劲度系数为k=200N/m的轻弹簧相连静止于水平地面上,Α物体质量mA=2kg, Β物体质量mB="4Kg." 现用一恒力F=30N竖直向上拉物体A, 使Α从静止开始运动,当Α运动到最高点时Β刚好要离开地面但不能继续上升。若弹簧始终处于弹性限度内,取g = 10m/s2。求:
(1)Β刚要离开地面时,拉力F做的功;
(2)Β刚要离开地面时Α的加速度大小;
(3)从Α开始运动到Α到达最高点的过程中弹簧弹力对Α做的功。
如图,BC为半径等于R=竖直放置的光滑细圆管,O为细圆管的圆心,BO与竖直线的夹角为45°;在圆管的末端C连接一光滑水平面,水平面上一质量为M=1.5kg的木块与一轻质弹簧拴接,轻弹簧的另一端固定于竖直墙壁上.现有一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始即受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失.小球过后与木块发生完全非弹性碰撞(g=10m/s2).求:
(1)小球在A点水平抛出的初速度v0;
(2)在圆管运动中圆管对小球的支持力N;
(3)弹簧的最大弹性势能EP.
如图,粗糙水平面与半径R=1.5m的光滑圆弧轨道相切于B点,质量m=1kg的物体在大小为10N、方向与水平水平面成37°角的拉力F作用下从A点由静止开始沿水平面运动,到达B点时立刻撤去F,物体沿光滑圆弧向上冲并越过C点,然后返回经过B处的速度vB=15m/s。已知sAB=15m,g=10m/s2,sin37°=0.6,con37°=0.8。求:
(1)物体到达C点时对轨道的压力;
(2)物体越过C点后上升的最大高度h。
(3)物体与水平面的动摩擦因数μ。
一列士兵的队伍长120m,正以某一速度做匀速直线运动,因有紧急情况需要通知排头士兵,一名通讯员以不变的速率跑步从队尾赶到队头,又从队头返回队尾,在此过程中队伍前进了288m,求通讯员在这段往返时间内共走了多少m?
如图所示,一质量为M=5.0kg,长度L=4m的平板车静止在水平地面上,距离平板车右侧S=16.5m处有一固定障碍物.障碍物上固定有一电动机A。另一质量为m=2.0kg可视为质点的滑块,以v0=8m/s的水平初速度从左端滑上平板车,同时电动机A对平板车施加一水平向右、大小为22.5N的恒力F.1s后电动机A突然将功率变为P=52.5w并保持不变,直到平板车碰到障碍物停止运动时,电动机A也同时关闭。滑块沿水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点滑入光滑竖直圆弧轨道,并沿轨道下滑.已知平板车间与滑块的动摩擦因数μ1=0.5,平板车与地面的动摩擦因数μ2=0.25,圆弧半径为R=1.0m,圆弧所对的圆心角∠BOD=θ=1060,g取10m/s2,sin53°=0.8,cos53°=0.6,不计空气阻力,求:
(1)0 1s时间内,滑块相对小车运动的位移x;
(2)电动机A做功W;
(3)滑块运动到圆弧轨道最低点C时对轨道压力的大小FN.
质量为3㎏的长木板A置于光滑的水平地面上,质量为2㎏木块B(可视为质点)置于木板A的左端,在水平向右的力F作用下由静止开始运动,如图甲所示。A、B运动的加速度随时间变化的图象如图乙所示。(g取10m/s2)
求:(1)木板与木块之间的动摩擦因数。(设最大静摩擦力等于滑动摩擦力)。(2)4s末A、B的速度。(3)若6s末木板和木块刚好分离,则木板的长度为多少?