如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O点处于同一水平线上的P点处有一个光滑的细钉。已知OP=,在A点给小球一个水平向左的初速度v0,发现小球恰能到达跟P点在同一竖直线上的最高点B,则:
(1)小球到达B点时的速率?
(2)若不计空气阻力,则初速度v0为多少?
(3)若初速度v0=,则在小球从A到B的过程中克服空气阻力做了多少功?
如图所示,x轴与水平传送带重合,坐标原点0在传送带的左端,传送带OQ长 L=8m,传送带顺时针速度V。=5m/s, —质量m=1kg的小物块轻轻放在传送带上xp="2m" 的P点,小物块随传送带运动到Q点后恰好能冲上光滑圆弧轨道的最高点N点。小物块与 传送带间的动摩擦因数μ.=0.5,重力加速度g= 10m/s2,求:
(1)N点的纵坐标;
(2)若将小物块轻放在传送带上的某些位置,小物块均能沿光滑圆弧轨道运动(小物块始终 在圆弧轨道运动不脱轨)到达纵坐标yM=0.25m的M点,求这些位置的横坐标范围。
电荷量为q的小球质量为m静止在水平向右的匀强电场中,如图所示,丝线与竖直方向成37°角,现突然将该电场方向变为向下且大小不变,不考虑因电场的改变而带来的其他影响(重力加速度为g),求:
(1)匀强电场的电场强度的大小;
(2)求小球经过最低点时丝线的拉力.
如图所示,弹簧AB原长为35cm,A端挂一个重50N的物体,手执B端,将物体置于倾角为30°的斜面上。当物体沿斜面匀速下滑时,弹簧长度为40cm;当物体匀速上滑时,弹簧长度为50cm,试求:
(1)弹簧的劲度系数;
(2)物体与斜面的滑动摩擦因数。
如图,一个质量为m的小球(可视为质点)以某一初速度从A点水平抛出,恰好从圆管BCD的B点沿切线方向进入圆弧,经BCD从圆管的最高点D射出,恰好又落到B点.已知圆弧的半径为R且A与D在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:
(1)小球从A点做平抛运动的初速度v0的大小;
(2)在D点处管壁对小球的作用力N的大小及其方向;
(3)小球在圆管中运动时克服阻力做的功Wf.
如图所示,在竖直面内有一光滑水平直轨道与半径为R=0.25m的光滑半圆形轨道在半圆的一个端点B相切,半圆轨道的另一端点为C。在直轨道上距B为x(m)的A点,有一可看做质点、质量为m=0.1kg的小物块处于静止状态。现用水平恒力将小物块推到B处后撤去恒力,小物块沿半圆轨道运动到C处后,恰好落回到水平面上的A点,取g=10m/s2。求
(1)水平恒力对小物块做功W与x的关系式;
(2)水平恒力做功的最小值;
(3)水平恒力的最小值。
如图所示,一质量不计的弹簧原长为10cm,一端固定于质量m=2 kg的物体上,另一端施一水平拉力F.(g=10 m/s2)
(1)若物体与水平面间的动摩擦因数为0.2,当弹簧拉长到12cm时,物体恰好匀速运动,弹簧的劲度系数多大?
(2)若将弹簧拉长到11cm时,物体所受到的摩擦力大小为多少?
(3)若将弹簧拉长到13cm时,物体所受的摩擦力大小为多少?(设最大静摩擦力与滑动摩擦力相等)
如图所示,水平绝缘轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m。轨道所在空间存在水平向右的匀强电场,电场强度E=1.0×10 4N/C。现有一电荷量q=+1.0×10 -4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体运动到圆形轨道最低点B时的速度v B=5.0m/s。已知带电体与水平轨道间的动摩擦因数μ=0.50,重力加速度g="10m/s" 2。
求:(1)带电体运动到圆形轨道的最低点B时,圆形轨道对带电体支持力的大小;
(2)带电体在水平轨道上的释放点P到B点的距离;
(3)带电体第一次经过C点后,落在水平轨道上的位置到B点的距离。
如图所示,BCDG是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数μ=0.5,重力加速度为g.
(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,滑块到达与圆心O等高的C点时速度为多大?
(2)在(1)的情况下,求滑块到达C点时受到轨道的作用力大小;
(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
)一劲度系数k=800 N/m的轻质弹簧两端分别连接着质量均为12 kg的物体A、B,将它们竖直静止放在水平面上,如图所示.现将一竖直向上的变力F作用在A上,使A开始向上做匀加速运动,经0.40 s物体B刚要离开地面.g=10 m/s2,
试求:
(1)物体B刚要离开地面时,A物体的速度vA;
(2)物体A重力势能的改变量;
如图所示,一个质量m=1kg的长木板静止在光滑的水平面上,并与半径为R=1.8m的光滑圆弧形固定轨道接触(但不粘连),木板的右端到竖直墙的距离为s=0.08m;另一质量也为m的小滑块从轨道的最高点由静止开始下滑,从圆弧的最低点A滑上木板。设长木板每次与竖直墙的碰撞时间极短且无机械能损失。木板的长度可保证物块在运动的过程中不与墙接触。已知滑块与长木板间的动摩擦因数=0.1,g取10m/s2。试求:
(1)滑块到达A点时对轨道的压力大小;
(2)当滑块与木板达到共同速度()时,滑块距离木板左端的长度是多少?
如图所示,一质量为m=1 kg的小物块轻轻放在水平匀速运动的传送带上的A点,随传送带运动到B点,小物块从C点沿圆弧切线进入竖直光滑的半圆轨道恰能做圆周运动.已知圆弧半径R=0.9 m,轨道最低点为D,D点距水平面的高度h=0.8 m.小物块离开D点后恰好垂直碰击放在水平面上E点的固定倾斜挡板.已知物块与传送带间的动摩擦因数μ=0.3,传送带以5 m/s恒定速率顺时针转动(g取10 m/s2),试求:
(1)传送带AB两端的距离;
(2)小物块经过D点时对轨道的压力的大小;
(3)倾斜挡板与水平面间的夹角θ的正切值.
如图所示,一个质量为m的小球用一根长为l的细绳吊在天花板上,给小球一水平初速度,使它做匀速圆周运动,小球运动所在的平面是水平的。已知细绳与竖直方向的夹角为θ,重力加速度为g。求:
(1)细绳对小球的拉力;
(2)小球做圆周运动的线速度。
【附加题10分】一辆电动汽车的质量为1×103 kg,额定功率为2×104 W,在水平路面上由静止开始做直线运动,最大速度为v2,运动中汽车所受阻力恒定.发动机的最大牵引力为2×103 N,其行驶过程中牵引力F与车速的倒数1/v的关系如图所示.试求:
(1)整个运动中的最大加速度;
(2)电动车匀加速运动的最长时间
(3)电动车发生100m的位移(此时已达到最大速度)的过程中所用的时间.