如图所示,传送带的两个轮子半径均为r=0.2m,两个轮子最高点A、B在同一水平面内,A、B间距离L=5m,半径R=0.4m的固定、竖直光滑圆轨道与传送带相切于B点,C点是圆轨道的最高点。质量m=0.1kg的小滑块与传送带之间的动摩擦因数μ=0.4。重力加速度g=10m/s2。求:
(1)当传送带的轮子以ω=10rad/s的角速度顺时针匀速转动时,将小滑块无初速地放到传送带上的A点,小滑块从A点运动到B点的时间t是多少?
(2)传送带的轮子以不同的角速度匀速转动,将小滑块无初速地放到传送带上的A点,小滑块运动到C点时,对圆轨道的压力大小不同,最大压力Fm是多大?
如图所示,斜面轨道AB与水平面之间的夹角= 530,BD为半径R =" 4" m的圆弧形轨道,且B点与D点在同一水平面上,在B点,斜面轨道AB与圆弧形轨道BC在B点相切,整个轨道处于竖直平面内且处处光滑,在A点处一个质量m ="1" kg的小球由静止开始滑下,经过B、C两点后从D点斜抛出去,已知A点距地面的高度H =" 10" m,B点距地面的高度h="5" m,(不计空气阻力,g取10 m/s2,cos 530=0.6,保留两位有效数字)求:
(1)小球从D点抛出后,落到水平地面上的速度;
(2)小球经过AB段所用的时间;
(3)小球经过圆弧轨道最低处C点时对轨道的压力多大?
如图所示,P是倾角为30°的光滑固定斜面.劲度为k的轻弹簧一端同定在斜面底端的固定挡板C上,另一端与质量为m的物块A相连接.细绳的一端系在物体A上,细绳跨过不计质量和摩擦的定滑轮,另一端有一个不计质量的小挂钩.小挂钩不挂任何物体时,物体A处于静止状态,细绳与斜面平行.在小挂钩上轻轻挂上一个质量也为m的物块B后,物体A沿斜面向上运动.斜面足够长,运动过程中B始终未接触地面.
(1)求物块A刚开始运动时的加速度大小a;
(2)设物块A沿斜面上升通过Q点位置时速度最大,求Q点到出发点的距离x0及最大速度vm;
(3)把物块B的质量变为Nm(N>0.5),小明同学认为,只要N足够大,就可以使物块A沿斜面上滑到Q点时的速度增大到2vm,你认为是否正确?如果正确,请说明理由,如果不正确,请求出A沿斜面上升到Q点位置时的速度的范围.
(15分)几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,就是动车。
(1)假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等。若1节动车加3节拖车编成的动车组的最大速度为120km/h;则6节动车加3节拖车编成的动车组的最大速度为多少?
(2)若动车组运动阻力正比于其速度,已知动车组最大功率P0时最大速度是,若要求提速一倍,则动车组功率是多少?
(3)若动车组从静止开始做匀加速直线运动,经过时间达到动车组最大功率P,然后以该最大功率继续加速,又经过时间达到最大速度,设运动阻力恒定,动车组总质量为m,求动车组整个加速距离。
如图所示,质量m=1 kg的小球从距离地面高H=3m处自由下落,到达地面时恰能沿凹陷于地面的半圆形槽壁运动,半圆形槽的半径R=0.5 m,小球到达槽最低点时速率恰好为8m/s,并继续沿槽壁运动直到从槽左端边缘飞出且沿竖直方向上升、下落,如此反复几次,设摩擦力大小恒定不变,取g=10 m/s2,求:
(1)小球第一次飞出半圆形槽上升到距水平地面的高度h为多少?
(2)小球最多能飞出槽外几次?
如图所示,半径R=0.4 m的光滑圆弧轨道BC固定在竖直平面内,轨道的上端点B和圆心O的连线与水平方向的夹角θ=30°,下端点C为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上.质量m=0.1 kg的小物块(可视为质点)从空中A点以v0=2 m/s的速度被水平抛出,恰好从B点沿轨道切线方向进入轨道,经过C点后沿水平面向右运动至D点时,弹簧被压缩至最短,C、D两点间的水平距离L=1.2 m,小物块与水平面间的动摩擦因数μ=0.5,g取10 m/s2.求:
(1)小物块经过圆弧轨道上B点时速度vB的大小;
(2)小物块经过圆弧轨道上C点时对轨道的压力大小;
(3)弹簧的弹性势能的最大值Epm.
如图所示的竖直平面内有范围足够大、水平向左的匀强电场,在虚线的左侧有垂直纸面向里的匀强磁场,磁感应强度大小为B,一绝缘弯杆由两段直杆和一段半径为R的半圆环组成,固定在纸面所在的竖直平面内,PQ、MN水平且足够长,半圆环PAM在磁场边界左侧,P、M点在磁场边界线上,NMAP段是光滑的,现有一质量为m,带电+q的小环套在MN杆上,它所受电场力为重力的倍,当在M右侧D点由静止释放小环时,小环刚好能达到P点。
(1)求DM间距离x0;
(2)求上述过程中小环第一次通过与O等高的A点时弯杆对小环作用力的大小;
(3)若小环与PQ间动摩擦因数为μ(设最大静摩擦力与滑动摩擦力大小相等且),现将小环移至M点右侧4R处由静止开始释放,求小环在整个运动过程中克服摩擦力所做的功。
如图所示,在水平向右的匀强电场中,一根长为L的绝缘细线,一端连着一质量为m、带电量为+q的小球,另一端固定于O点,现把小球向右拉至细线水平且与场强方向平行的位置,无初速释放,小球能摆到最低点的另一侧,细线与竖直方向的最大夹角θ=30°.求:
(1)求场强E的大小;
(2)若使带电小球在平行于电场的竖直平面内做完整的圆周运动,小球运动过程中的最小动能是多少?
(3)若把该小球向左拉至细线水平且与场强方向平行的位置,无初速释放,小球摆到最低点时细线的拉力T=?
如图所示,两根足够长的光滑金属导轨MN、PQ间距为L=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:
(1)通过cd棒的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)力F的功率P是多少?
用绳AC和BC吊起一重物处于静止状态,AC与竖直方向成370,BC与竖直方向成530,如图所示.若AC绳能承受的最大拉力为150 N,BC绳能承受的最大拉力为105 N,与重物相连的绳非常牢固,求要使得绳AC与BC均不断裂,重物的最大质量为多少?(g=10N/kg,sin37°=0.6,cos37°=0.8)
如图所示,四分之一光滑绝缘圆弧轨道AP和水平绝缘传送带PC固定在同一竖直平面内,圆弧轨道的圆心为O,半径为R。静止的传送带PC之间的距离为L,在OP的左侧空间存在方向竖直向下的匀强电场,场强大小为。一质量为m、电荷量为+q的小物体从圆弧顶点A由静止开始沿轨道下滑,恰好运动到C端后返回。不计物体经过轨道与传送带连接处P时的机械能损失,重力加速度为g。求:
(1)物体运动到P点的速度大小;
(2)物体与传送带间的动摩擦因数μ;
(3)若传送带沿逆时针方向传动,传送带速度,则物体第一次返回到圆弧轨道P点时物体对圆弧轨道的压力大小;
如图所示,两平行金属板A.B长8cm,两极板间距离d=8cm,A极板比B极板电势高300V,一电荷量q=1×10-10C、质量m=1×10-20kg的带正电的粒子,沿电场中心线RO垂直电场线方向飞入电场,初速度V0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在O点的点电荷Q形成的电场区域,(设界面PS右边点电荷的电场分布不受界面的影响),已知两界面MN、PS相距为12cm,D是中心线RO与界面PS的交点,O点在中心线上,距离界面PS为9cm,粒子穿过界面PS恰好做匀速圆周运动打在放置于中心线上的荧光屏bc上,不计粒子重力(静电力常数K=9.0×109N.m2/C2)。
(1)求粒子穿过界面MN时偏离中心线RO的距离多远?到达PS界面时离D点多远?
(2)确定点电荷Q的电性并求其电荷量的大小。
如图所示是放置在竖直平面内游戏滑轨的模拟装置,滑轨由四部分粗细均匀的金属杆组成:水平直轨AB,半径分别为R1和R2的圆弧轨道, 其中R2=3.0m,长为L=6m的倾斜直轨CD,AB.CD与两圆弧轨道相切,其中倾斜直轨CD部分表面粗糙,动摩擦因数为μ=1/6,其余各部分表面光滑,一质量为m=2kg的滑环(套在滑轨上),从AB的中点E处以V0=10m/s的初速度水平向右运动。已知θ=370, g取10m/s2。(sinθ=0.6,cosθ=0.8)求:
(1)滑环第一次通过圆弧轨道O2的最低点F处时对轨道的压力;
(2)滑环克服摩擦力做功所通过的总路程。
如图,在水平向右的匀强电场中有一固定点O,用一根长度L=0.4m的绝缘细线把质量m =0.1kg、电量q =7.5×10-5C的带正电小球悬挂在O点,小球静止在B点时细线与竖直方向的夹角为θ=37º,现将小球拉至位置A使细线水平后由静止释放,g取10m/s2.求:
(1)匀强电场的场强大小;
(2)小球运动通过最低点C时的速度大小;
(3)小球通过最低点C时细线对小球的拉力大小。