已知地球半径为R,地球表面处的重力加速度为g,不考虑地球自转的影响。
(1)推导第一宇宙速度v的表达式;
(2)若已知地球自转的周期为T,求地球同步卫星距离地面的高度h。
“嫦娥一号”探月卫星为绕月极地卫星.利用该卫星可对月球进行成像探测.设卫星在绕月极地轨道上做匀速圆周运动时距月球表面的高度为H,绕行周期为TM;月球绕地球公转的周期为TE,轨道半径为R0;地球半径为RE,月球半径为RM.已知光速为c.
(1)如图所示,当绕月极地轨道的平面与月球绕地球公转的轨道平面垂直时(即与地心到月心的连线垂直时),求绕月极地卫星向地球地面发送照片需要的最短时间;
(2)忽略地球引力、太阳引力对绕月卫星的影响,求月球与地球的质量之比.
宇航员到了某星球后做了如下实验:如图所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角2θ。当圆锥和球一起以周期T匀速转动时,球恰好对锥面无压力.已知星球的半径为R,万有引力常量为G.求:
(1)线的拉力;
(2)该星球表面的重力加速度;
(3)该星球的第一宇宙速度;
(4)该星球的密度.
在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题。如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G的数值,图所示是卡文迪许扭秤实验示意图。卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G的数值及其他已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人。
(1)若在某次实验中,卡文迪许测出质量分别为m1、m2相距为r的两个小球之间引力的大小为F,求万有引力常量G;
(2)若已知地球半径为R,地球表面重力加速度为g,万有引力常量为G,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式。
我国“嫦娥一号”月球探测器在绕月球成功运行之后,为进一步探测月球的详细情况,又发射了一颗绕月球表面飞行的科学试验卫星,假设该卫星绕月球的运动视为圆周运动,并已知月球半径为R,月球表面重力加速度为g,万有引力常量为G,不考虑月球自转的影响.
(1)求该卫星环绕月球运行的第一宇宙速度v1;
(2)若该卫星在没有到达月球表面之前先要在距月球某一高度绕月球做圆周运动进行调姿,且该卫星此时运行周期为T,求该卫星此时的运行半径r;
(3)由题目所给条件,请提出一种估算月球平均密度的方法,并推导出密度表达式.
两个行星各有一个卫星绕其表面运行,已知两个卫星的周期之比为1:3,两行星半径之比为3:1,则:
(1)两行星密度之比为多少?
(2)两行星表面处重力加速度之比为多少?
有一极地卫星绕地球做匀速圆周运动,该卫星的运动周期为T0/4,其中T0为地球的自转周期.已知地球表面的重力加速度为g,地球半径为R..求:
(1)该卫星一昼夜经过赤道上空的次数n为多少?试说明理由。
(2)该卫星离地面的高度H.
土星上空有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动。其中有两个岩石颗粒A和B与土星中心距离分别为rA=8.0×104 km和r B=1.2×105 km。忽略所有岩石颗粒间的相互作用。(结果可用根式表示)
⑴求岩石颗粒A和B的线速度之比;
⑵求岩石颗粒A和B的周期之比;
⑶土星探测器上有一物体,在地球上重为10 N,推算出他在距土星中心3.2×105 km处受到土星的引力为0.38 N。已知地球半径为6.4×103 km,请估算土星质量是地球质量的多少倍?
(12分)⑴开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量,将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式;(已知引力常量为G,太阳的质量为。)
⑵开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立,经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106s,试计算地球的质量。(引力常量为G=6.67×10-11N·m2/kg2,结果保留一位有效数字。)
(12分)中国自行研制,具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A、远地点为B的椭圆轨道上,A点距地面的高度为h1,飞船飞行五周后进行变轨,进入预定圆轨道,如图所示,设飞船在预定圆轨道上飞行n圈所用时间为t,若已知地球表面重力加速度为g,地球半径为R,求:
⑴地球的平均密度是多少;
⑵飞船经过椭圆轨道近地点A时的加速度大小;
⑶椭圆轨道远地点B距地面的高度。
“嫦娥一号” 的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步。已 知“嫦娥一号”绕月飞行轨道近似圆周,距月球表面的高度为H,飞行周期为T,月球的半径为R,万有引力常量为G,假设宇航長在飞船上,飞船在月球表面附近竖直平面内俯冲, 在最低点附近作半径为r的圆周运动,宇航员质量是m,飞船经过最低点时的速度是v;。求:
(1)月球的质量M是多大?
(2)经过最低点时,座位对宇航员的作用力F是多大?
(14分)据报道:2012年10月14日,奥地利男子费利克斯·鲍姆加特纳在美国新墨西哥州东南部罗斯韦尔地区成功完成高空极限跳伞,从3.9万米高度起自由落体,创下纪录;时速达到约1342公里,成为不乘坐喷气式飞机或航天飞行器而超音速飞行的世界第一人.
(1)设定鲍姆加特纳连同装备总质量为,从距地高H处由静止开始竖直下落时达到最大速度,打开降落伞后,到达地面时速度可忽略不计,设定他下落整个过程中各处重力加速度都为.求:
①鲍姆加特纳连同装备从开始下落至到达地面的过程中,损失的机械能;
②由静止开始下落达到最大速度的过程中,克服阻力所做的功.
(2)实际上重力加速度与距地面高度有关,设定地面重力加速度数值为,地球半径R="6400" km,求距地高度处的重力加速度数值.(保留三位有效数字,不考虑地球自转影响)
(6分)宇航员在未知星球上可用竖直上抛法测定星球表面的重力加速度。在某星球表面附近以速度V0竖直上抛物体,测出物体从抛出到落回所需时间为t,已知该星球半径为R .则:
①此星球表面的重力加速度?
②卫星绕此星球做匀速圆周运动的最大速度?
我国月球探测计划“嫦娥工程”已经启动,科学家对月球的探索会越来越深入.
(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,月球绕地球的运动近似看做匀速圆周运动,试求出月球绕地球运动的轨道半径。
(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度v0竖直向上抛出一个小球,经过时间t,小球落回抛出点.已知月球半径为r,引力常量为G,试求出月球的质量M月。
按照科学家的设想,将来人类离开地球到宇宙中生活,可以住在如图所示的宇宙村,它是一个圆环形的密封建筑,人们生活在圆环形建筑的内壁上。为了使人们在其中生活不至于有失重感,可以让它旋转。若这个建筑物的直径d=200m,要让人类感觉到像生活在地球上一样,求该建筑绕其中心轴转动的转速。(取g=10m/s2,)