如图所示,一质量为M=5.0kg,长度L=4m的平板车静止在水平地面上,距离平板车右侧S=16.5m处有一固定障碍物.障碍物上固定有一电动机A。另一质量为m=2.0kg可视为质点的滑块,以v0=8m/s的水平初速度从左端滑上平板车,同时电动机A对平板车施加一水平向右、大小为22.5N的恒力F.1s后电动机A突然将功率变为P=52.5w并保持不变,直到平板车碰到障碍物停止运动时,电动机A也同时关闭。滑块沿水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点滑入光滑竖直圆弧轨道,并沿轨道下滑.已知平板车间与滑块的动摩擦因数μ1=0.5,平板车与地面的动摩擦因数μ2=0.25,圆弧半径为R=1.0m,圆弧所对的圆心角∠BOD=θ=1060,g取10m/s2,sin53°=0.8,cos53°=0.6,不计空气阻力,求:
(1)0 1s时间内,滑块相对小车运动的位移x;
(2)电动机A做功W;
(3)滑块运动到圆弧轨道最低点C时对轨道压力的大小FN.
【原创】如图所示,粗糙斜直轨道PA和两个光滑圆弧轨道、组成的S形轨道,斜轨道与圆弧轨道在A点光滑连接,B点是最低点,已知,圆弧轨道半径均为R,两圆弧交接处C、D之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略。斜轨道最高点P与水平面BQ的高度差为h=6.5R。从P点静止释放一个质量为m可视为质点的小球,小球沿S形轨道运动后刚好从G点水平飞出,落到水平地面上Q点。不计空气阻力,重力加速度为g,求:
(1)落点Q点到B点的距离为x?
(2)小球运动到圆形轨道最低点B点时对轨道的压力;
(3)小球与轨道PA间的动摩擦因数μ。
如图所示,一固定的l/4圆弧轨道,半径为l.25m,表面光滑,其底端与水平面相切,且与水平面右端P点相距6m。轨道的下方有一长为l.5m的薄木板,木板右侧与轨道右侧相齐。现让质量为1kg的物块从轨道的顶端由静止滑下,当物块滑到轨道底端时,木板从轨道下方的缝隙中冲出,此后木板在水平推力的作用下保持6m/s的速度匀速运动,物块则在木板上滑动。当木板右侧到达P点时,立即停止运动并被锁定,物块则继续运动,最终落到地面上。已知P点与地面相距l.75m,物块与木板间的动摩擦因数为0.1,取重力加速度g=10m/s2,不计木板的厚度和缝隙大小,求:
(1)物块滑到弧形轨道底端受到的支持力大小;
(2)物块离开木板时的速度大小;
(3)物块落地时的速度大小及落地点与P点的水平距离。
如图所示,半径r = 0.2m的1/4光滑圆弧形槽底端B与水平传带平滑相接,传送带以v1=4m/s的速率顺时针转动, 其右端C点正上方悬挂一质量为m=0.1kg的物块b, BC距离L=1.25m,一质量为m=0.1kg物块a从A点无初速滑下,经传送带后与物块b相碰并粘在一起,在a、b碰撞瞬间绳子断开,a、b沿水平方向飞出,已知滑块与传送带间的动摩擦因数μ="0.2," C点距水平面的高度为h="0.8m," a、b两物块均视为质点,不计空气阻力,g取10m/s2,
求:(1)滑块a到达底端B时对槽的压力
(2)滑块a到达传送带C点的速度大小
(3)求滑块a、b的落地点到C点的水平距离
某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10m/s2)
“要打战必打胜战”,我人民海军为此进行登陆演练,假设一艘战舰因吨位大吃水太深,只能停锚在离海岸登陆点x=1 km处.登陆队员需要从较高的军舰甲板上,利用绳索下滑到登陆快艇上再行登陆接近目标,若绳索两端固定好后,与竖直方向的夹角θ=37°,为保证行动最快,队员甲先匀加速滑到某最大速度,再靠摩擦匀减速滑至快艇,速度刚好为零,在队员甲开始下滑时,队员乙在甲板上同时开始向快艇以速度平抛救生圈,第一个刚落到快艇,接着抛第二个,结果第二个救生圈刚好与甲队员同时抵达快艇(快艇可视为质点),若人的质量m,重力加速度g=10 m/s2,问:
(1)军舰甲板到快艇的竖直高度H为多少?
队员甲在绳索上运动的时间t0为多少?
(2)若加速过程与减速过程中的加速度大小相等,则队员甲在何处速度最大?最大速度多大?
(3)若登陆艇额定功率5 kW,载人后连同装备总质量为103 kg,从静止开始以最大功率向登陆点加速靠近,到达岸边时刚好能达到最大速度10 m/s,若登陆舰前进时阻力恒定,则登陆艇运动的时间t′为多少?
滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。如图所示是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点,圆心角为60º,半径OC与水平轨道CD垂直,水平轨道CD段粗糙且长8m。一运动员从轨道上的A点以3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回。已知运动员和滑板的总质量为60kg,B、E两点与水平面CD的竖直高度分别为h和H,且h=2m,H=2.8m,取10m/s2。求:
(1)运动员从A运动到达B点时的速度大小vB;
(2)轨道CD段的动摩擦因数;
(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,请求出回到B点时速度的大小;如不能,则最后停在何处?
如图所示,一足够长的固定斜面与水平方向的夹角为θ=37°,物体B与斜面间的动摩擦因数为μ=0.5。将物体A以初速度v0=20m/s从斜面顶端水平抛出的同时,物体B在斜面上A以初速度2v0沿斜面向上运动,经历时间t,物体A第一次落到斜面上时,恰与沿斜面向上运动物体B相碰,已知sin37°= 0.6,cos37°= 0.8,g=10m/s2,不计空气阻力,两物体都可视为质点。求:
(1)时间t的大小。
(2)A物体刚开始做平抛运动时,A、B两物体的距离L?
滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。如图所示是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点,圆心角为60º,半径OC与水平轨道CD垂直,水平轨道CD段粗糙且长8m。一运动员从轨道上的A点以3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回。已知运动员和滑板的总质量为60kg,B、E两点与水平面CD的竖直高度分别为h和H,且h=2m,H=2.8m,取10m/s2。求:
(1)运动员从A运动到达B点时的速度大小vB;
(2)轨道CD段的动摩擦因数;
(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,请求出回到B点时速度的大小;如不能,则最后停在何处?
滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。如图所示是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点,圆心角为60º,半径OC与水平轨道CD垂直,水平轨道CD段粗糙且长8m。一运动员从轨道上的A点以3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回。已知运动员和滑板的总质量为60kg,B、E两点与水平面CD的竖直高度分别为h和H,且h=2m,H=2.8m,取10m/s2。求:
(1)运动员从A运动到达B点时的速度大小vB;
(2)轨道CD段的动摩擦因数;
(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,请求出回到B点时速度的大小;如不能,则最后停在何处?
地面上有一个半径为R的圆形跑道,高为h的平台边缘上的P点在地面上P′点的正上方,P′与跑道圆心O的距离为L(L>R),如图所示。跑道上停有一辆小车,现从P点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计)。问:
(1)当小车分别位于A点和B点时(∠AOB=90°),沙袋被抛出时的初速度各为多大?
(2)若小车在跑道上运动,则沙袋被抛出时的初速度在什么范围内?
(3)若小车沿跑道顺时针运动,当小车恰好经过A点时,将沙袋抛出,为使沙袋能在B处落入小车中,小车的速率v应满足什么条件?
如图所示:轻弹簧一端连于固定点O,可在竖直平面内自由转动;另一端连接一带电小球P,其质量kg,电荷量q=0.2C。将弹簧保持原长拉至水平后,以初速度竖直向下射出小球P,小球P到达O点的正下方点时速度恰好水平,其大小v=15m/s。若、相距R=1.5m,小球P在点与另一由细绳悬挂的、不带电的、质量kg的静止绝缘小球N相碰。碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=lT的匀强磁场。此后,小球P在竖直平面内做半径r=0.5m的匀速圆周运动。小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取。则。
(1)判断小球P所带电性,并说明理由。
(2)弹簧从水平摆至竖直位置的过程中,其弹性势能变化了多少?
(3)请通过计算并比较相关物理量,判断小球P、N碰撞后能否在某一时刻具有相同的速度。
如图甲所示,倾斜光滑直轨道AB和一直径d=0.4m的光滑圆轨道BCD平滑连接,AB和BCD相切于B点,CD连线是圆轨道竖直方向的直径(C、D两点分别为圆轨道的最低点和最高点),且∠BOC=θ=37°。一质量m=0.1kg的小滑块(可视为质点)从轨道AB上高H处的某点由静止滑下。已知sin37°=0.6,cos37°=0.8。
(1)若小滑块刚好能通过圆轨道最高点D点,求此时的高度H;
(2)若用力传感器测出滑块经过圆轨道最高点D时对轨道的压力为F,请在如图乙中绘制出压力F与高度H的关系图象;
(3)通过计算判断是否存在某个H值,使得滑块经过最高点D后能直接落到直轨道AB上与圆心等高的点。
某人站在高60 m的平台边缘,以20 m/s的初速度竖直向上抛出一石块,不考虑空气阻力,取g="10" m/s2求:
(1)石块上升的最大高度。
(2)石块从抛出到落地的时间。
(3)石块落到地面时的速度。