如图,在粗糙水平台阶上静止放置一质量m=0.5kg的小物块,它与水平台阶表面的动摩擦因数μ=0.5,且与台阶边缘O点的距离s=5m.在台阶右侧固定了一个圆弧挡板,圆弧半径R=1m,圆弧的圆心也在O点.今以O点为原点建立平面直角坐标系.现用F=5N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.
(1)若小物块恰能击中挡板上的P点(OP与水平方向夹角为37°),求其离开O点时的速度大小;
(2)为使小物块击中挡板,求拉力F作用的最短时间;
(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值.
光滑水平面上,一个长平板与半圆组成如图所示的装置,半圆弧面(直径AB竖直)与平板
表面相切于A点,整个装置质量M=5kg.在装置的右端放一质量为m=1kg的小滑块(可视为质点),小滑块与长平板间的动摩擦因数μ=0.4,装置与小滑块一起以=12m/s的速度向左运动.现给装置加一个F=64N向右的水平推力,小滑块与长平板发生相对滑动,当小滑块滑至长平板左端A时,装置速度恰好减速为0,此时撤去外力F并将装置锁定.小滑块继续沿半圆形轨道运动,且恰好能通过轨道最高点B.滑块脱离半圆形轨道后又落回长平板.已知小滑块在通过半圆形轨道时克服摩擦力做功=9.5J..求:
(1)装置运动的时间和位移大小;
(2)长平板的长度l;
(3)小滑块最后落回长平板上的落点离A的距离.
如图所示,半径为R的3/4圆周轨道固定在竖直平面内,O为圆轨道的圆心,D为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC与圆心等高。质量为m的小球从离B点高度为h处的A点由静止开始下落,从B点进入圆轨道,小球能通过圆轨道的最高点,并且在最高点对轨道的额压力不超过3mg。现由物理知识推知,小球下落高度h与圆轨道半径R及小球经过D点时的速度vD之间的关系为。
(1)求高度h应满足的条件;
(2)通过计算说明小球从D点飞出后能否落在水平面BC上,并求落点与B点水平距离的范围。
如图所示,空间有场强E=1.0×103V/m竖直向下的电场,长L=0.4m不可伸长的轻绳固定于O点,另一端系一质量m=0.05kg带电q=+5×10-4C的小球,拉起小球至绳水平后在A点无初速度释放,当小球运动至O点的正下方B点时,绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=30°、无限大的挡板MN上的C点。试求:
(1)绳子至少受多大的拉力才能被拉断;
(2)A、C两点的电势差。
某物理小组在研究过山车原理的过程中,提出了下列的设想:取一个与水平方向夹角为37°、长为L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个小物块以初速度,从某一高处水平抛出,到A点时速度方向恰好沿AB方向,并沿倾斜轨道滑下。已知物块与倾斜轨道的动摩擦因数(g取10m/s2,)
(1)求小物块的抛出点和A点的高度差;
(2)要使小物块不离开轨道,并从水平轨道DE滑出,求竖直圆弧轨道的半径应该满足什么条件?
(3)为了让小物块不离开轨道,并且能够滑回倾斜轨道AB,则竖直圆轨道的半径应该满足什么条件?
(4)按照(3)问的要求,小物块进入轨道后可以有多少次通过圆轨道上距水平轨道高为0.01m的某一点。
如图所示,在xOy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界,OM与负x轴成45°角。在x<0且OM的左侧空间存在着负x方向的匀强电场,场强E大小为32N/C;在y<0且OM的右侧空间存在着垂直纸面向里的匀强磁场,磁感应强度B大小为0.1T。一不计重力的带负电的微粒,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度进入磁场,最终离开电、磁场区域。已知微粒的电荷量q=5×10-18C,质量m=1×10-24kg,求:
(1)带电微粒第一次经过电、磁场边界OM的坐标;
(2)带电微粒在磁场区域运动的总时间;
(3)带电微粒最终离开电、磁场区域的位置坐标。
如图所示,AB为竖直半圆轨道的竖直直径,轨道半径R=0.9m,轨道B端与水平面相切,质量m=1kg的光滑小球从水平面以初速度V0向B滑动,取g=10m/s2。
(1)若V0=6m/s,求小球经轨道最低点B瞬间对轨道的压力为多少?
(2)若小球刚好能经过A点,则小球在A点的速度至少为多大?小球离开A点后在水平面的落点与B点的距离为多少?
如图,、、为同一竖直平面内的三个点,沿竖直方向,,.将一质量为的小球以一定的初动能自点水平向右抛出,小球在运动过程中恰好通过点。使此小球带电,电荷量为(>0),同时加一匀强电场,场强方向与所在平面平行,现从点以同样的初动能沿某一方向抛出此带点小球,该小球通过了点,到达点时的动能是初动能的3倍;若该小球从点以同样的初动能沿另一方向抛出,恰好通过点,且到达点的动能为初动能的6倍,重力加速度大小为。求
(1)无电场时,小球达到点时的动能与初动能的比值;
(2)电场强度的大小和方向。
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,半径R=0.4m的四分之一粗糙圆轨道MN竖直固定放置,末端N与一长L=0.8m的水平传送带相切,水平衔接部分摩擦不计,传动轮(轮半径很小)做顺时针转动,带动传送带以恒定的速度v0运动。传送带离地面的高度h=1.25m,其右侧地面上有一直径D=0.5m的圆形洞,洞口最左端的A点离传送带右端的水平距离x=1m,B点在洞口的最右端,现使质量为m=0.5kg的小物块从M点由静止开始释放,滑到N点时速度为2m/s,经过传送带后做平抛运动,最终落入洞中,传送带与小物块之间的动摩擦因数μ=0.5,g取10m/s2,求:
(1)小物块到达圆轨道末端N时对轨道的压力;
(2)若v0=3 m/s,求小物块在传送带上运动的时间;
(3)若要使小物块能落入洞中,求v0应满足的条件。
分 如图所示,平台上的小球从A点水平抛出,恰能无碰撞地进入光滑的BC斜面,经C点进入光滑平面CD时速率不变,最后进入悬挂在O点并与水平面等高的弧形轻质筐内。已知小球质量为1kg,A、B两点高度差2m,BC斜面高4m,倾角,悬挂弧筐的轻绳长为6m,小球看成质点,轻质筐的重量忽略不计,弧形轻质筐的大小远小于悬线长度,重力加速度为g=10m/s2 ,试求:
(1)B点与抛出点A的水平距离x;
(2)小球运动至C点的速度大小;
(3)小球进入轻质筐后瞬间,小球所受拉力F的大小.
如图所示,轨道ABCD的AB段为一半径R=0.2的光滑1/4圆形轨道,BC段为高为h=5的竖直轨道,CD段为水平轨道。一质量为0.1的小球由A点从静止开始下滑到B点时速度的大小为2/s,离开B点做平抛运动(g取10/s2),求:
①小球离开B点后,在CD轨道上的落地点到C的水平距离;
②小球到达B点时对圆形轨道的压力大小?
③如果在BCD轨道上放置一个倾角=45°的斜面(如图中虚线所示),那么小球离开B点后能否落到斜面上?如果能,求它第一次落在斜面上的位置。
如图所示,一小球从平台上水平抛出,恰好落在临近平台的一倾角为α=53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8 m,g=10 m/s2,sin 53°=0.8,cos 53°=0.6,则:
(1)小球水平抛出的初速度v0是多大?
(2)斜面顶端与平台边缘的水平距离x是多少?
(3)若斜面顶端高H=20.8 m,则小球离开平台后经多长时间t到达斜面底端?
宇航员站在一星球表面上的h高处,沿水平方向抛出一个小球,经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L;若抛出时的初速度增大两倍,则抛出点与落地点之间的距离变为L . 已知两落地点在同一水平面上.求该星球表面的重力加速度.