如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E,在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。一个氕核 1 1H和一个氚核 2 1H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向。已知 1 1H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。 1 1H的质量为m,电荷量为q不计重力。求
(1) 1 1H第一次进入磁场的位置到原点O的距离
(2)磁场的磁感应强度大小
(3) 2 1H第一次离开磁场的位置到原点O的距离
如图所示,长为L、内壁光滑的直管与水平地面成30°角固定放置.将一质量为m的小球固定在管底,用一轻质光滑细线将小球与质量为M=km的小物块相连,小物块悬挂于管口.现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变.(重力加速度为g)
(1)求小物块下落过程中的加速度大小;
(2)求小球从管口抛出时的速度大小;
(3)试证明小球平抛运动的水平位移总小于
某战士在倾角为30o山坡上进行投掷手榴弹训练。他从A点以某一初速度v0沿水平方向投出手榴弹,正好落在B点,测得AB=90m。若空气阻力不计,(g=10m/s2)求:
(1)手榴弹抛出的速度?
(2)从抛出开始经多长时间手榴弹与山坡间的距离最大?并求出此时手榴弹与山坡间的距离?
如图所示,在距地面高为H=45m处,某时刻将一小球A以初速度v0=40m/s水平抛出,与此同时,在A的正下方有一物块B也以相同的初速度沿水平地面同方向滑出,B与水平地面间的动摩擦因数为μ=0.4,A、B均可视为质点,空气阻力不计,求:
(1)A球落地时的速度大小;
(2)A球落地时,A、B之间的距离。
如图所示,四分之一圆轨道OA与传送带相切相连,下方的CD水平轨道与他们在同一竖直面内。圆轨道OA的半径,传送带长,圆轨道OA光滑,AB与CD间的高度差为。一滑块从O点静止释放,当滑块经过B点时(无论传送带是否运动),静止在CD上的长为的木板(此时木板的末端在B点的正下方)在的水平恒力作用下启动,此时滑块落入木板中,已知滑块与传送带的摩擦因数,木板的质量,木板与CD间的摩擦因数为,取,求:
(1)如果传送带静止,求滑块到达B点的速度。
(2)如果传送带静止,求的取值范围。
(3)如果传送带可以以任意速度传动,取,试判断滑块还能否落在木板上。
某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地面的B点,其水平位移X1=4.8m,(空气阻力忽略不计,g=10m/s2),求:
(1)人与滑板在空中运动的时间;
(2)人与滑板刚落地时速度的大小.
如图所示,质量为M=1kg,长为L=2.7m的木板,其上表面光滑且距离水平地面的高度为h=0.2m,在水平面上向右做直线运动,A、B是其左右两个端点.当木板的速度v0=4m/s时对木板施加一个大小为3N的水平向左的恒力F,并同时将一个质量为m=1kg的小球轻放在木板上的P点(小球可视为质点,放在P点时相对于地面的速度为零),PB=,经过一段时间,小球从木板脱离后落到地面上.已知木板与地面间的动摩擦因数μ=0.1,g取10m/s2.求:
(1)小球从放到木板上开始至落到地面所用的时间;
(2)小球落地瞬间木板的速度.
如图所示,一小球从平台上水平抛出,恰好落在临近平台的一倾角α=53°的光滑斜面顶端并下滑,已知斜面顶端与平台的高度差h=0.8m,重力加速度(sin53°=0.8,cos53°=0.6)求:
(1)小球水平抛出的初速度是多少?
(2)斜面顶端与平台边缘的水平距离s是多少;
(3)若斜面顶端高H=20.8m,则小球离开平台后经多次时间到达斜面底端。
某人站在一平台上,用长L=0.6m的轻细线拴一个质量为m=0.6kg的小球,让它在竖直平面内以O点为圆心做圆周运动,当小球转到最高点A时,人突然撒手。经t=0.8s小球落地,落地点B与A点的水平距离x=4.8m,不计空气阻力,g=10m/s2。求:
(1)A点距地面高度h;
(2)人撒手前小球运动到A点时,绳对球的拉力FT的大小。
如图所示,两光滑金属导轨,间距d=0.2m,在桌面上的部分是水平的,处在磁感应强度B=0.1T、方向竖直向下的有界磁场中.电阻R=3Ω.桌面高H=0.8m,金属杆ab质量m=0.2kg,电阻r=1Ω,在导轨上距桌面h=0.2m的高处由静止释放,落地点距桌面左边缘的水平距离s=0.4m,g=10m/s2.求:
(1)金属杆刚进入磁场时,R上的电流大小.
(2)整个过程中R上放出的热量.
如图,在粗糙水平台阶上静止放置一质量m=0.5kg的小物块,它与水平台阶表面的动摩擦因数μ=0.5,且与台阶边缘O点的距离s=5m.在台阶右侧固定了一个圆弧挡板,圆弧半径R=1m,圆弧的圆心也在O点.今以O点为原点建立平面直角坐标系.现用F=5N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.
(1)若小物块恰能击中挡板上的P点(OP与水平方向夹角为37°),求其离开O点时的速度大小;
(2)为使小物块击中挡板,求拉力F作用的最短时间;
(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值.
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,四分之三周长的细圆管的半径R=0.4m,管口B和圆心O在同一水平面上,D是圆管的最高点,其中半圆周BE段存在摩擦,BC和CE段动摩擦因数相同,ED段光滑;质量m=0.5kg、直径稍小于圆管内径的小球从距B正上方高H=2.5m的A处自由下落,从B处进入圆管继续运动直到圆管的最高点D飞出,恰能再次飞到B处.重力加速度g=10m/s2.求:
(1)小球飞离D点时的速度;
(2)小球在D点时对轨道的压力大小和方向;
(3)小球从B点到D点过程中克服摩擦所做的功.
在如图所示的平面直角坐标系内,x轴水平、y轴竖直向下。计时开始时,位于原点处的沙漏由静止出发,以加速度a沿x轴匀加速度运动,此过程中沙从沙漏中漏出,每隔相等的时间漏出相同质量的沙。已知重力加速度为g,不计空气阻力以及沙相对沙漏的初速度。
(1)求t0时刻漏出的沙在t(t> t0)时刻的位置坐标;
(2)t时刻空中的沙排成一条曲线,求该曲线方程。