高中数学

已知实数a,b满足:关于x的不等式|x2+ax+b|≤|2x2-4x-16|对一切x∈R均成立.
(1)请验证a=-2,b=-8满足题意.
(2)求出所有满足题意的实数a,b,并说明理由.
(3)若对一切x>2,均有不等式x2+ax+b≥(m+2)x-m-15成立,求实数m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数 ().
(1)求的单调区间;
(2)试通过研究函数)的单调性证明:当时,
(Ⅲ)证明:当,且均为正实数,  时,

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

定义域为的函数满足,当时,
(1)当时,求的解析式;
(2)当x∈时,恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的值域为集合,关于的不等式的解集为,集合,集合
(1)若,求实数的取值范围;
(2)若,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有位学生,每次活动均需该系位学生参加(都是固定的正整数)。假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系位学生,且所发信息都能收到。记该系收到李老师或张老师所发活动通知信息的学生人数为
(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;
(2)求使取得最大值的整数

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆的焦距为2,且过点.
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为,过点的直线与椭圆C交于两点.
①当直线的倾斜角为时,求的长;
②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,

(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

·大纲理)已知双曲线C:(a>0,b>0)的左、右焦点分别为,离心率为3,直线y=2与C的两个交点间的距离为.
(1)求a,b;
(2)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:成等比数列.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点.

(1)求椭圆的方程;
(2)求 面积的最大值,并求此时直线的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知双曲线的中心为原点,左、右焦点分别为,离心率为,点是直线上任意一点,点在双曲线上,且满足.
(1)求实数的值;
(2)证明:直线与直线的斜率之积是定值;
(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点,在线段上去异于点的点,满足,证明点恒在一条定直线上.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

安徽理)(设椭圆的焦点在轴上
(1)若椭圆的焦距为1,求椭圆的方程;
(2)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线轴与点,并且,证明:当变化时,点在某定直线上。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

·广东理)设数列的前项和为.已知,,.
(1) 求的值;
(2) 求数列的通项公式;
(3) 证明:对一切正整数,有.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知,且函数在R上是单调函数,探究函数的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

天津理)已知函数.
(1) 求函数f(x)的单调区间;
(2) 证明: 对任意的t>0, 存在唯一的s, 使.
(3) 设(2)中所确定的s关于t的函数为, 证明: 当时, 有.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题