已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点. (1)求椭圆的方程; (2)求 面积的最大值,并求此时直线的方程.
、(本小题满分14分)已知定义域为的函数对任意的,,且(1)求的值;(2)若为单调函数,,向量,,是否存在实数,对任意恒成立?若存在,求出的取值范围;若不存在,说明理由.
(本小题满分13分)已知数列,其前项和为.(1)求数列的通项公式,并证明数列是等差数列;(2)如果数列满足,请证明数列是等比数列;(3)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值.
(本小题满分12分)已知平面向量,,函数.(1)写出函数的单调递减区间;(2)设,求直线与在闭区间上的图像的所有交点坐标.
(本小题满分12分)在△ABC中,设内角A、B、C的对边分别为a、b、c,(Ⅰ)求角C的大小; (Ⅱ)若且,求的面积.
(本小题满分12分)设函数,若不等式的解集为。(1)求的值;(2)若函数在上的最小值为1,求实数的值。