如图,已知正四棱柱中,底面边长,侧棱的长为4,过点作的垂线交侧棱于点,交于点.
(1)求证:⊥平面;
(2)求三棱锥的体积.
(本题12分)
如图为正三角形,EC平面ABC,BDCE,且CE=CA=2BD=a,M是EA的中点.(1)求证:(1) DM平面ABC;(2)CMAD;(3)求这个多面体的体积.
如图,菱形的边长为4,,.将菱形沿
对角线折起,得到三棱锥,点是棱的中点,.
(1)求证:OM∥平面ABD;
(2)求证:平面DOM⊥平面ABC
(3)求三棱锥B﹣DOM的体积.
如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC
及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EDC.
(1)求证:CD⊥DE;
(2)求三棱锥A—DEC的体积。
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,.
(1)求证:OD//平面VBC;
(2)求证:AC⊥平面VOD;
(3)求棱锥的体积.
如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。
(Ⅰ)求出该几何体的体积;
(Ⅱ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置(不需证明);若不存在,请说明理由。
已知某几何体的俯视图是如图1所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(Ⅰ)求该几何体的体积;
(Ⅱ)求该几何体的侧面积.
用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
如图,在直角梯形中,,,且.现以为一边向梯形外作矩形,然后沿边将矩形翻折,使平面与平面垂直.
(1)求证:平面;
(2)若点到平面的距离为,求三棱锥的体积.
(本小题满分12分)如图,多面体ABCDEF中,底面ABCD是菱形,,四边形BDEF是正方形,且平面ABCD.
(Ⅰ)求证:平面AED;
(Ⅱ)若,求多面体ABCDEF的体积V.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.
(Ⅰ)求证:;
(Ⅱ)若,求四棱锥的体积.
(本小题满分14分))如图,在三棱柱中,⊥底面,且△ 为正三角形,,为的中点.
(1)求证:直线∥平面;
(2)求证:平面⊥平面;
(3)求三棱锥的体积.