(本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).
(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[
(本题满分 8 分)如图,正四棱柱的底面边长,若异面直线与所成角的大小为,求正四棱柱的体积.
如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N.求:
(1)该三棱柱的侧面展开图的对角线长;
(2)PC和NC的长.
(本小题满分12分)在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为。
(1)求棱的长;
(2)求经过,,,四点的球的表面积。
如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。
(Ⅰ)求出该几何体的体积;
(Ⅱ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置(不需证明);若不存在,请说明理由。
已知某几何体的俯视图是如图1所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(Ⅰ)求该几何体的体积;
(Ⅱ)求该几何体的侧面积.
用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
如图,在直角梯形中,,,且.现以为一边向梯形外作矩形,然后沿边将矩形翻折,使平面与平面垂直.
(1)求证:平面;
(2)若点到平面的距离为,求三棱锥的体积.
(本小题满分12分)如图,多面体ABCDEF中,底面ABCD是菱形,,四边形BDEF是正方形,且平面ABCD.
(Ⅰ)求证:平面AED;
(Ⅱ)若,求多面体ABCDEF的体积V.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.
(Ⅰ)求证:;
(Ⅱ)若,求四棱锥的体积.
(本小题满分14分))如图,在三棱柱中,⊥底面,且△ 为正三角形,,为的中点.
(1)求证:直线∥平面;
(2)求证:平面⊥平面;
(3)求三棱锥的体积.