(本题满分10分)如图所示,是一个奖杯的三视图(单位:cm),,计算这个奖杯的体积.
某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:
(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望; (2)某顾客参与两次摸球,求他能中奖的概率.
如图,已知长方体ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端点的点,且. (1) 当∠BEA1为钝角时,求实数λ的取值范围; (2) 若λ=,记二面角B1-A1B-E的的大小为θ,求|cosθ|.
已知a,b是正数,且a+b=1,求证:(ax+by)(bx+ay)≥xy.
在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数 ),圆C的参数方程为(θ为参数).若点P是圆C上的动点,求点P到直线l的距离的最小值.
已知矩阵A=属于特征值l的一个特征向量为α=. (1)求实数b,l的值; (2)若曲线C在矩阵A对应的变换作用下,得到的曲线为C¢:x2+2y2=2,求曲线C的方程.