(本小题满分15分)已知椭圆的离心率为,其左焦点到点的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点的直线与椭圆交于不同的两点、,则内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
(本小题满分12分)设是实数,对函数和抛物线:,有如下两个命题:函数的最小值小于0;抛物线上的点到其准线的距离. 已知“”和“”都为假命题,求的取值范围.
(本小题满分12分) 已知为实数,, (Ⅰ)若a=2,求的单调递增区间; (Ⅱ)若,求在[-2,2] 上的最大值和最小值。
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,, 为数列的前n项和. (1)求数列的通项公式和数列的前n项和; (2)若对任意的,不等式恒成立,求实数的取值范围; (3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
设椭圆的左、右顶点分别为、,点在椭圆上且异于、两点,为坐标原点. (1)若直线与的斜率之积为,求椭圆的离心率; (2)对于由(1)得到的椭圆,过点的直线交轴于点,交轴于点,若,求直线的斜率.
已知函数 (1)若,求的值; (2)若的图像与直线相切于点,求的值; (3)在(2)的条件下,求函数的单调区间.