已知椭圆具有性质:若是椭圆:且为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线和的斜率都存在,并分别记为,,那么与之积是与点位置无关的定值.试对双曲线且为常数写出类似的性质,并加以证明.
如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB.设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线(其中)与y轴相交于点P,与轨迹C相交于点Q,R,且,求的取值范围.
已知函数. (1)设,,求的单调区间;(2)若对任意,,试比较与的大小.
如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.
已知数列的前项和为,,,,其中为常数.(1)证明:;(2)当为何值时,数列为等差数列?并说明理由.
已知函数.(1)若,且,求的值;(2)当取得最小值时,求自变量的集合.