将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 ( )
A. |
B. | C. | D. |
. (12分)如图所示,函数的一段图象过点.
(1)求函数的表达式;
(2)将函数的图象向右平移个单位,得函数的图象,求函数的最大值,并求此时自变量的取值集合.
(本小题满分12分)
已知函数.
(Ⅰ)求函数的最小正周期和单调递增区间;
(Ⅱ)函数的图象可由函数的图象经过怎样的变换得出?
如图所示,某市政府决定在以政府大楼为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径,,与之间的夹角为.
(1)将图书馆底面矩形的面积表示成的函数.
(2)若,求当为何值时,矩形的面积有最大值?
其最大值是多少?
设函数,其中向量,
(1)求的最小正周期与单调减区间;
(2)在△ABC中,分别是角A、B、C的对边,已知,△ABC的面积为,求的值。
设函数,其中向量=(2cosx,1),=(cosx,
sin2x),x∈R.
(1)若f(x)=1-且x∈[-,],求x;
(2)若函数y=2sin2x的图象按向量=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值.
(本小题满分13分)已知函数,.
(Ⅰ)求的值;
(Ⅱ)求的最大值和最小值.
(本小题满分13分)已知函数,.
(Ⅰ)求的零点;
(Ⅱ)求的最大值和最小值.
(本题14分,第(1)小题4分,第(2)小题10分).
已知:函数.
(1)求的值;
(2)设,,求的值.
已知函数,下面结论错误的是 ………( )
A.函数的最小正周期为 |
B.函数是奇函数 |
C.函数在时,取得最小值 |
D.函数在区间上是减函数 |