如图所示,某市政府决定在以政府大楼为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径,,与之间的夹角为.(1)将图书馆底面矩形的面积表示成的函数.(2)若,求当为何值时,矩形的面积有最大值?其最大值是多少?
已知数列中,其前项和满足: (1)试求数列的通项公式; (2)求数列的前项和.
正项数列的前项和满足: (1)求数列的通项公式; (2)令,求数列的前项和.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数. (1)当时,求函数的表达式; (2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
在中,角的对边分别为.已知,且. (1)当时,求的值; (2)若角为锐角,求的取值范围.
已知数列中, (1)求数列的通项; (2)令求数列的前n项和Tn.