已知函数的图象关于直线对称,当, 且时,试求的值.
盒子中有10张奖券,其中3张有奖,甲、乙先后从中各抽取1张(不放回),记“甲中奖”为A,“乙中奖”为B.(1)求P(A),P(B),P(AB),P(A|B); (2)A与B是否相互独立,说明理由.
编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X.(1)求随机变量X的概率分布;(2)求随机变量X的数学期望和方差.
甲、乙两人进行投篮比赛,两人各投3球,谁投进的球数多谁获胜,已知每次投篮甲投进的概率为,乙投进的概率为,求:(1)甲投进2球且乙投进1球的概率;(2)在甲第一次投篮未投进的条件下,甲最终获胜的概率.
一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的概率分布;(3)求这名学生在途中至少遇到一次红灯的概率.
1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?