如图,在锐角△ABC中,AB<AC,AD是边BC上的高,P是线段AD内一点。过P作PE⊥AC,垂足为E,做PF⊥AB,垂足为F。O1、O2分别是△BDF、△CDE的外心。求证:O1、O2、E、F四点共圆的充要条件为P是△ABC的垂心。
已知圆的内接四边形ABCD的边长分别为AB=2,BC=6, CD=DA=4,(1)求角A的大小;(2)求四边形ABCD的面积.
设函数f (x)=cos(2x+)+sin2x+2a(1)求函数f (x)的单调递增区间(2)当0≤x≤时,f (x)的最小值为0,求a的值.
已知a、b、c分别是△ABC三个内角A、B、C的对边. (1)若△ABC面积为,c=2,A=60º,求a,b的值; (2)若acosA=bcosB,试判断△ABC的形状,证明你的结论.
如图,在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.
甲、乙二人参加知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题,那么(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一个抽到选择题的概率是多少?