(本小题满分14分)已知函数的导函数是,在处取得极值,且,(1)求的极大值和极小值;(2)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断与的大小关系,并说明理由.
若对于一切实数、,都有 (1)求并证明为奇函数; (2)若,求。
(本小题满分16分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.
(本小题满分12分) 如图,三定点A(2,1),B(0,-1),C(-2,1); 三 动点D,E,M满足="t," =" t" , ="t" , t∈[0,1]. (Ⅰ) 求动直线DE斜率的变化范围; (Ⅱ) 求动点M的轨迹方程.
(本小题满分12分) 已知数列中,是其前项和,并且, ⑴设数列,求证:数列是等比数列; ⑵设数列,求证:数列是等差数列; ⑶求数列的通项公式及前项和。
(本小题满分10分) 某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米,房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用. (1)把房屋总造价表示成的函数,并写出该函数的定义域. (2)当侧面的长度为多少时,总造价最底?最低总造价是多少?