设函数,其中向量=(2cosx,1),=(cosx,sin2x),x∈R.(1)若f(x)=1-且x∈[-,],求x;(2)若函数y=2sin2x的图象按向量=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值.
(1) 已知集合,若,求实数的值 (2)已知集合A={x|x2-5x-6=0},集合B={x|mx+1=0}若,求实数m组成的集合.
已知函数f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1 (1)求f(1)的值 (2)若满足f(x) +f(x-8)≤2 求x的取值范围
设函数,其中 (I)当时,判断函数在定义域上的单调性; (II)求函数的极值点; (III)证明对任意的正整数n ,不等式都成立.
设a∈R,函数f(x)=lnx-ax. (1)讨论函数f(x)的单调区间和极值; (2)已知(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>e.
已知函数(R,,,)图象如图,P是图象的最高点,Q为图象与轴的交点,O为原点.且,,. (Ⅰ)求函数的解析式; (Ⅱ)将函数图象向右平移1个单位后得到函数的图象,当时,求函数的最大值.