高中数学

关于x的不等式x2-ax+2a<0的解集为A,若集合A中恰有两个整数,则实数a的取值范围是________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

不等式(-1)na<2+对任意n∈N*恒成立,求实数a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若不等式组的解集中所含整数解只有-2,求k的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,动物园要围成相同面积的长方形虎笼四间.一面可利用原有的墙,其他各面用钢筋网围成.
(1)现有可围成36m长的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?
(2)若使每间虎笼的面积为24m2,则每间虎笼的长、宽各设计为多少时,可使围成的四间虎笼的钢筋网总长最小?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设关于x的不等式mx2-2x-m+1<0对于满足|m|≤2的一切m都成立,则x的取值范围是________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数f(x)=x2+ax+3.
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围;
(2)当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知一元二次不等式f(x)<0的解集为,则f(10x)>0的解集为______.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),总成本为G(x)(万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本);销售收入R(x)(万元)满足:R(x)=假定该产品产销平衡,那么根据上述统计规律求下列问题.
(1)要使工厂有赢利,产量x应控制在什么范围内?
(2)工厂生产多少台产品时,可使赢利最多?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知f(x)=-3x2+a(6-a)x+b.
(1)解关于a的不等式f(1)>0;
(2)当不等式f(x)>0的解集为(-1,3)时,求实数a、b的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知a>0,解关于x的不等式x2x+1<0.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知f(x)为二次函数,不等式f(x)+2<0的解集是,且对任意α、β∈R恒有f(sinα)≤0,f(2+cosβ)≥0,求函数f(x)的解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

a>b>cn∈N,且恒成立,则n的最大值为(  ).

A.2 B.3 C.4 D.5
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=|ln x|,若 >a>b>1,则f(a),f(b),f(c)比较大小关系正确的是(  ).

A.f(c)>f(b)>f(a) B.f(b)>f(c)>f(a)
C.f(c)>f(a)>f(b) D.f(b)>f(a)>f(c)
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知ab是不相等的正数,xy,则xy的大小关系是________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数f(x)=xn+bx+c(n∈N+,b,c∈R).
(1)设n≥2,b=1,c=-1,证明:f(x)在区间(,1)内存在唯一零点;
(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;
(3)设n=2,若对任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学几何不等式试题