在实数集中,我们定义的大小关系“”为全体实数排了一个“序”.类似实数排序的定义,我们定义“点序”记为“”:已知和,,当且仅当“”或“且”.定义两点的“”与“”运算如下:
.
则下面四个命题:
①已知和,则;
②已知和,若,则,且;
③已知,,则;
④已知,则对任意的点,都有;
⑤已知,则对任意的点,都有.
其中真命题的序号为 (把真命题的序号全部写出)
定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点,例如是上的平均值函数,就是它的均值点.现有函数是上的平均值函数,则实数的取值范围是 .
定义(为与的夹角),给出下列命题.
①;
②;
③;
④;
⑤设,则
其中正确的序号为 .
对大于的自然数的三次幂可用奇数进行以下方式的“分裂” 仿此,若的“分裂”数中有一个是,则的值为 .
对大于的自然数的三次幂可用奇数进行以下方式的“分裂” 仿此,若的“分裂”数中有一个是,则的值为 .
【原创】对定义在区间D上的函数和,如果对任意,都有成立,那么称函数在区间D上可被替代,D称为“替代区间”.给出以下命题:
①在区间上可被替代;
②可被替代的一个“替代区间”为;
③在区间可被替代,则;
④,则存在实数,使得在区间 上被替代;
其中真命题的有
【原创】在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,a*0=a;
(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).
则函数f(x)=(ex)*的最小值为是 .
若函数满足(其中不同时为0),则称函数为“准奇函数”,称点为函数的“中心点”。现有如下命题:
①函数是准奇函数;
②函数是准奇函数;
③若准奇函数在上的“中心点”为,则函数为上的奇函数;
④已知函数是准奇函数,则它的“中心点”为;
其中正确的命题是 .(写出所有正确命题的序号)
对于函数,若在其定义域内存在,使得成立,则称函数具有性质P.
(1)下列函数中具有性质P的有
① ② ③,
(2)若函数具有性质P,则实数的取值范围是 .
函数的定义域为,若且时总有,则称为单函数,例如:函数是单函数.下列命题:
①函数是单函数;
②指数函数是单函数;
③若为单函数,且,则;
④在定义域上具有单调性的函数一定是单函数;
⑤若为单函数,则函数在定义域上具有单调性。
其中的真命题是______.(写出所有真命题的编号)
已知R上的不间断函数满足:(1)当时,恒成立;(2)对任意的都有。奇函数满足:对任意的,都有成立,当时,。若关于的不等式
对恒成立,则的取值范围 。