对于函数,如果存在区间,同时满足下列条件:①在内是单调的;②当定义域是时,的值域也是,则称是该函数的“和谐区间”.若函数存在“和谐区间”,则的取值范围是( )
A. | B. | C. | D. |
设函数f(x)=-lnx,则y=f(x)( )
A.在区间(,1),(1,e)内均有零点 |
B.在区间(,1),(1,e)内均无零点 |
C.在区间(,1)内有零点,在区间(1,e)内无零点 |
D.在区间(,1)内无零点,在区间(1,e)内有零点 |
已知定义在上的函数是周期为的偶函数,当时,,如果直线与曲线恰有两个交点,则实数的值是( )
A. |
B. |
C.或 |
D.或 |
已知函数在处取得极值,且恰好是的一个零点.
(Ⅰ)求实数的值,并写出函数的单调区间;
(Ⅱ)设、分别是曲线在点和(其中)处的切线,且.
①若与的倾斜角互补,求与的值;
②若(其中是自然对数的底数),求的取值范围.
对于二次函数,有下列命题:
①若,则;
②若,则;
③若,则.
其中一定正确的命题是______________.(写出所有正确命题的序号)
已知函数若直线与函数的图象有两个不同的交点,则实数的取值范围是 .
对于函数,若,则称为函数的“不动点”;若,则称为函数的“稳定点”.如果函数的“稳定点”恰是它的“不动点”,那么实数的取值范围是( )
A. | B. | C. | D. |
设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明().
已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1.
(1)求直线的方程及的值;
(2)若(其中是的导函数),求函数的最大值;
(3)当时,求证:.